Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let

f(x)={[ln(-x)+3," for "x < -3],[ln(-x+3)," for "-3 <= x < 3]:}
Is 
f continuous at 
x=-3 ?
Choose 1 answer:
(A) Yes
(B) 
No

Let\newlinef(x)={ln(x)+3amp; for xlt;3ln(x+3)amp; for 3xlt;3 f(x)=\left\{\begin{array}{ll} \ln (-x)+3 &amp; \text { for } x&lt;-3 \\ \ln (-x+3) &amp; \text { for }-3 \leq x&lt;3 \end{array}\right. \newlineIs f f continuous at x=3 x=-3 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No \mathrm{No}

Full solution

Q. Let\newlinef(x)={ln(x)+3 for x<3ln(x+3) for 3x<3 f(x)=\left\{\begin{array}{ll} \ln (-x)+3 & \text { for } x<-3 \\ \ln (-x+3) & \text { for }-3 \leq x<3 \end{array}\right. \newlineIs f f continuous at x=3 x=-3 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No \mathrm{No}
  1. Check Continuity at 3-3: To determine if the function f(x)f(x) is continuous at x=3x=-3, we need to check if the left-hand limit, the right-hand limit, and the value of the function at x=3x=-3 are all equal.
  2. Calculate Left-hand Limit: First, we calculate the left-hand limit as xx approaches 3-3 from the left. This means we use the first part of the function definition, f(x)=ln(x)+3f(x) = \ln(-x) + 3.\newlinelimx3f(x)=limx3(ln(x)+3)\lim_{x\to-3^-} f(x) = \lim_{x\to-3^-} (\ln(-x) + 3)
  3. Calculate Right-hand Limit: Substitute xx with a value slightly less than 3-3, say 3.01-3.01, into the function to get an idea of the left-hand limit.\newlinef(3.01)=ln((3.01))+3=ln(3.01)+3f(-3.01) = \ln(-(-3.01)) + 3 = \ln(3.01) + 3
  4. Left-hand Limit Calculation: Since the natural logarithm function is continuous and ln(3)\ln(3) is a finite number, as xx approaches 3-3 from the left, ln(x)\ln(-x) approaches ln(3)\ln(3), and thus the left-hand limit is ln(3)+3\ln(3) + 3.\newlinelimx3f(x)=ln(3)+3\lim_{x\to-3^-} f(x) = \ln(3) + 3
  5. Right-hand Limit Calculation: Next, we calculate the right-hand limit as xx approaches 3-3 from the right. This means we use the second part of the function definition, f(x)=ln(x+3)f(x) = \ln(-x+3).\newlinelimx3+f(x)=limx3+(ln(x+3))\lim_{x\to-3^+} f(x) = \lim_{x\to-3^+} (\ln(-x+3))
  6. Conclusion: Substitute xx with a value slightly greater than 3-3, say 2.99-2.99, into the function to get an idea of the right-hand limit.\newlinef(2.99)=ln((2.99)+3)=ln(0.01)f(-2.99) = \ln(-(-2.99) + 3) = \ln(0.01)
  7. Conclusion: Substitute xx with a value slightly greater than 3-3, say 2.99-2.99, into the function to get an idea of the right-hand limit.f(2.99)=ln((2.99)+3)=ln(0.01)f(-2.99) = \ln(-(-2.99) + 3) = \ln(0.01)As xx approaches 3-3 from the right, x+3-x+3 approaches 00, and the natural logarithm of a number approaching 00 from the positive side goes to negative infinity. Therefore, the right-hand limit does not exist because ln(0)\ln(0) is undefined.limx3+f(x)=ln(0)=\lim_{x\to-3^+} f(x) = \ln(0) = -\infty
  8. Conclusion: Substitute xx with a value slightly greater than 3-3, say 2.99-2.99, into the function to get an idea of the right-hand limit.f(2.99)=ln((2.99)+3)=ln(0.01)f(-2.99) = \ln(-(-2.99) + 3) = \ln(0.01)As xx approaches 3-3 from the right, x+3-x+3 approaches 00, and the natural logarithm of a number approaching 00 from the positive side goes to negative infinity. Therefore, the right-hand limit does not exist because ln(0)\ln(0) is undefined.limx3+f(x)=ln(0)=\lim_{x\to-3^+} f(x) = \ln(0) = -\inftySince the right-hand limit as xx approaches 3-3 is negative infinity, which is not equal to the left-hand limit, the function 3-311 is not continuous at 3-322.

More problems from Intermediate Value Theorem