Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let

g(x)={[(x-2)^(2)," for "x <= 2],[2-x^(2)," for "x > 2]:}
Is 
g continuous at 
x=2 ?
Choose 1 answer:
(A) Yes
(B) 
No

Let\newlineg(x)={(x2)2amp; for x22x2amp; for xgt;2 g(x)=\left\{\begin{array}{ll} (x-2)^{2} &amp; \text { for } x \leq 2 \\ 2-x^{2} &amp; \text { for } x&gt;2 \end{array}\right. \newlineIs g g continuous at x=2 x=2 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No \mathrm{No}

Full solution

Q. Let\newlineg(x)={(x2)2 for x22x2 for x>2 g(x)=\left\{\begin{array}{ll} (x-2)^{2} & \text { for } x \leq 2 \\ 2-x^{2} & \text { for } x>2 \end{array}\right. \newlineIs g g continuous at x=2 x=2 ?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No \mathrm{No}
  1. Check Left-hand Limit: To determine if g(x)g(x) is continuous at x=2x=2, we need to check if the left-hand limit, the right-hand limit, and the value of the function at x=2x=2 are all equal.
  2. Calculate Left-hand Limit: First, let's find the left-hand limit as xx approaches 22 from the left, which means we use the piece of the function defined for x2x \leq 2: limx2g(x)=limx2(x2)2\lim_{x\to 2^-} g(x) = \lim_{x\to 2^-} (x-2)^2.
  3. Check Right-hand Limit: Calculating the left-hand limit: limx2(x2)2=(22)2=0\lim_{x\to 2^-} (x-2)^2 = (2-2)^2 = 0.
  4. Calculate Right-hand Limit: Now, let's find the right-hand limit as xx approaches 22 from the right, which means we use the piece of the function defined for x > 2: limx2+g(x)=limx2+(2x2)\lim_{x\to 2^+} g(x) = \lim_{x\to 2^+} (2-x^2).
  5. Compare Limits: Calculating the right-hand limit: limx2+(2x2)=2(22)=24=2\lim_{x\to 2^+} (2-x^2) = 2-(2^2) = 2-4 = -2.
  6. Check Value at x=2x=2: Since the left-hand limit (00) is not equal to the right-hand limit (2-2), g(x)g(x) is not continuous at x=2x=2.
  7. Calculate Value at x=2x=2: Finally, let's check the value of the function at x=2x=2. We can use either piece of the function since they should agree at x=2x=2 if the function is continuous. Let's use the first piece: g(2)=(22)2=0g(2) = (2-2)^2 = 0.
  8. Final Conclusion: The value of the function at x=2x=2 (00) is equal to the left-hand limit (00) but not equal to the right-hand limit (2-2). Therefore, g(x)g(x) is not continuous at x=2x=2.

More problems from Intermediate Value Theorem