Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
What is the sign of
−
5
⋅
(
−
1
−
2
)
-5 \cdot\left(\frac{-1}{-2}\right)
−
5
⋅
(
−
2
−
1
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(c) Zero
View step-by-step help
Home
Math Problems
Algebra 2
Evaluate functions
Full solution
Q.
What is the sign of
−
5
⋅
(
−
1
−
2
)
-5 \cdot\left(\frac{-1}{-2}\right)
−
5
⋅
(
−
2
−
1
)
?
\newline
Choose
1
1
1
answer:
\newline
(A) Positive
\newline
(B) Negative
\newline
(c) Zero
Multiply and Calculate:
Now, we multiply
−
5
-5
−
5
by the result we just got, which is
1
2
\frac{1}{2}
2
1
. So,
−
5
×
(
1
2
)
-5 \times \left(\frac{1}{2}\right)
−
5
×
(
2
1
)
equals
−
2.5
-2.5
−
2.5
.
Determine Sign:
Since
−
2.5
-2.5
−
2.5
is less than zero, the sign of the expression is negative.
More problems from Evaluate functions
Question
We want to factor the following expression:
\newline
x
4
+
9
x^{4}+9
x
4
+
9
\newline
Which pattern can we use to factor the expression?
\newline
U
U
U
and
V
V
V
are either constant integers or single-variable expressions.
\newline
Choose
1
1
1
answer:
\newline
(A)
(
U
+
V
)
2
(U+V)^{2}
(
U
+
V
)
2
or
(
U
−
V
)
2
(U-V)^{2}
(
U
−
V
)
2
\newline
(B)
(
U
+
V
)
(
U
−
V
)
(U+V)(U-V)
(
U
+
V
)
(
U
−
V
)
\newline
(C) We can't use any of the patterns.
Get tutor help
Posted 10 months ago
Question
z
=
−
19
+
3.14
i
z=-19+3.14 i
z
=
−
19
+
3.14
i
\newline
What are the real and imaginary parts of
z
z
z
?
\newline
Choose
1
1
1
answer:
\newline
(A)
\newline
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
\begin{array}{l} \operatorname{Re}(z)=-19 \text { and } \\ \operatorname{Im}(z)=3.14 \end{array}
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
\newline
(B)
\newline
Re
(
z
)
=
3.14
i
and
Im
(
z
)
=
−
19
\begin{array}{l} \operatorname{Re}(z)=3.14 i \text { and } \\ \operatorname{Im}(z)=-19 \end{array}
Re
(
z
)
=
3.14
i
and
Im
(
z
)
=
−
19
\newline
(c)
\newline
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
i
\begin{array}{l} \operatorname{Re}(z)=-19 \text { and } \\ \operatorname{Im}(z)=3.14 i \end{array}
Re
(
z
)
=
−
19
and
Im
(
z
)
=
3.14
i
\newline
(D)
\newline
Re
(
z
)
=
3.14
and
Im
(
z
)
=
−
19
\begin{array}{l} \operatorname{Re}(z)=3.14 \text { and } \\ \operatorname{Im}(z)=-19 \end{array}
Re
(
z
)
=
3.14
and
Im
(
z
)
=
−
19
Get tutor help
Posted 10 months ago
Question
z
=
−
60
−
12
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=-60-12 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
−
60
−
12
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
−
45
i
−
15.5
z=-45 i-15.5
z
=
−
45
i
−
15.5
\newline
What are the real and imaginary parts of
z
z
z
?
\newline
Choose
1
1
1
answer:
\newline
(A)
\newline
Re
(
z
)
=
−
45
and
Im
(
z
)
=
−
15.5
\begin{array}{l} \operatorname{Re}(z)=-45 \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array}
Re
(
z
)
=
−
45
and
Im
(
z
)
=
−
15.5
\newline
(B)
\newline
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
\begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 \end{array}
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
\newline
(C)
\newline
Re
(
z
)
=
−
45
i
and
Im
(
z
)
=
−
15.5
\begin{array}{l} \operatorname{Re}(z)=-45 i \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array}
Re
(
z
)
=
−
45
i
and
Im
(
z
)
=
−
15.5
\newline
(D)
\newline
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
i
\begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 i \end{array}
Re
(
z
)
=
−
15.5
and
Im
(
z
)
=
−
45
i
Get tutor help
Posted 10 months ago
Question
z
=
−
12
i
+
11
z=-12 i+11
z
=
−
12
i
+
11
\newline
What are the real and imaginary parts of
z
z
z
?
\newline
Choose
1
1
1
answer:
\newline
(A)
\newline
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
\begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 \end{array}
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
\newline
(B)
\newline
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
i
\begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 i \end{array}
Re
(
z
)
=
11
and
Im
(
z
)
=
−
12
i
\newline
(C)
\newline
Re
(
z
)
=
−
12
i
and
Im
(
z
)
=
11
\begin{array}{l} \operatorname{Re}(z)=-12 i \text { and } \\ \operatorname{Im}(z)=11 \end{array}
Re
(
z
)
=
−
12
i
and
Im
(
z
)
=
11
\newline
(D)
\newline
Re
(
z
)
=
−
12
and
Im
(
z
)
=
11
\begin{array}{l} \operatorname{Re}(z)=-12 \text { and } \\ \operatorname{Im}(z)=11 \end{array}
Re
(
z
)
=
−
12
and
Im
(
z
)
=
11
Get tutor help
Posted 10 months ago
Question
(
18
+
4
i
)
+
(
−
11
+
23
i
)
=
(18+4 i)+(-11+23 i)=
(
18
+
4
i
)
+
(
−
11
+
23
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
14
+
60
i
)
+
(
−
30
+
2
i
)
=
(14+60 i)+(-30+2 i)=
(
14
+
60
i
)
+
(
−
30
+
2
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
3
−
91
i
)
+
(
67
)
=
(3-91 i)+(67)=
(
3
−
91
i
)
+
(
67
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
−
71
+
2
i
)
+
(
88
−
12
i
)
=
(-71+2 i)+(88-12 i)=
(
−
71
+
2
i
)
+
(
88
−
12
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
−
33
−
2
i
)
−
(
50
+
9
i
)
=
(-33-2 i)-(50+9 i)=
(
−
33
−
2
i
)
−
(
50
+
9
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant