Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

z=-45 i-15.5
What are the real and imaginary parts of 
z ?
Choose 1 answer:
(A)

{:[Re(z)=-45" and "],[Im(z)=-15.5]:}
(B)

{:[Re(z)=-15.5" and "],[Im(z)=-45]:}
(c)

{:[Re(z)=-45 i" and "],[Im(z)=-15.5]:}
(D)

{:[Re(z)=-15.5" and "],[Im(z)=-45 i]:}

z=45i15.5 z=-45 i-15.5 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=45 and Im(z)=15.5 \begin{array}{l} \operatorname{Re}(z)=-45 \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array} \newline(B)\newlineRe(z)=15.5 and Im(z)=45 \begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 \end{array} \newline(C)\newlineRe(z)=45i and Im(z)=15.5 \begin{array}{l} \operatorname{Re}(z)=-45 i \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array} \newline(D)\newlineRe(z)=15.5 and Im(z)=45i \begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 i \end{array}

Full solution

Q. z=45i15.5 z=-45 i-15.5 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=45 and Im(z)=15.5 \begin{array}{l} \operatorname{Re}(z)=-45 \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array} \newline(B)\newlineRe(z)=15.5 and Im(z)=45 \begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 \end{array} \newline(C)\newlineRe(z)=45i and Im(z)=15.5 \begin{array}{l} \operatorname{Re}(z)=-45 i \text { and } \\ \operatorname{Im}(z)=-15.5 \end{array} \newline(D)\newlineRe(z)=15.5 and Im(z)=45i \begin{array}{l} \operatorname{Re}(z)=-15.5 \text { and } \\ \operatorname{Im}(z)=-45 i \end{array}
  1. Identify complex number: Identify the real and imaginary parts of the complex number.\newlineThe complex number is given as z=45i15.5z = -45i - 15.5. In a complex number of the form z=a+biz = a + bi, aa is the real part and bibi is the imaginary part, where ii is the imaginary unit.
  2. Extract real and imaginary parts: Extract the real and imaginary parts from the given complex number.\newlineFor z=45i15.5z = -45i - 15.5, the real part is 15.5-15.5 and the imaginary part is 45i-45i. However, we usually write the imaginary part without the imaginary unit when specifying it as a part of the complex number.
  3. Write down parts separately: Write down the real and imaginary parts separately.\newlineRe(zz) = 15.5-15.5 and Im(zz) = 45-45 (without the ii).
  4. Match parts with choices: Match the real and imaginary parts with the given choices.\newlineThe correct choice that matches our findings is:\newline(A) \{:[\text{Re}(z)=-45\text{" and "}],[\text{Im}(z)=-15.5]:}\newlineThis is incorrect because it swaps the real and imaginary parts.\newline(B) \{:[\text{Re}(z)=-15.5\text{" and "}],[\text{Im}(z)=-45]:}\newlineThis is incorrect because it does not include the imaginary unit with the imaginary part.\newline(C) \{:[\text{Re}(z)=-45 i\text{" and "}],[\text{Im}(z)=-15.5]:}\newlineThis is incorrect because it includes the imaginary unit with the real part.\newline(D) \{:[\text{Re}(z)=-15.5\text{" and "}],[\text{Im}(z)=-45 i]:}\newlineThis is the correct choice because it correctly identifies the real part as 15.5-15.5 and the imaginary part as 45i-45 i.

More problems from Domain and range