Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

z=-12 i+11
What are the real and imaginary parts of 
z ?
Choose 1 answer:
(A)

{:[Re(z)=11" and "],[Im(z)=-12]:}
(B)

{:[Re(z)=11" and "],[Im(z)=-12 i]:}
(c)

{:[Re(z)=-12 i" and "],[Im(z)=11]:}
(D)

{:[Re(z)=-12" and "],[Im(z)=11]:}

z=12i+11 z=-12 i+11 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=11 and Im(z)=12 \begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 \end{array} \newline(B)\newlineRe(z)=11 and Im(z)=12i \begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 i \end{array} \newline(C)\newlineRe(z)=12i and Im(z)=11 \begin{array}{l} \operatorname{Re}(z)=-12 i \text { and } \\ \operatorname{Im}(z)=11 \end{array} \newline(D)\newlineRe(z)=12 and Im(z)=11 \begin{array}{l} \operatorname{Re}(z)=-12 \text { and } \\ \operatorname{Im}(z)=11 \end{array}

Full solution

Q. z=12i+11 z=-12 i+11 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=11 and Im(z)=12 \begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 \end{array} \newline(B)\newlineRe(z)=11 and Im(z)=12i \begin{array}{l} \operatorname{Re}(z)=11 \text { and } \\ \operatorname{Im}(z)=-12 i \end{array} \newline(C)\newlineRe(z)=12i and Im(z)=11 \begin{array}{l} \operatorname{Re}(z)=-12 i \text { and } \\ \operatorname{Im}(z)=11 \end{array} \newline(D)\newlineRe(z)=12 and Im(z)=11 \begin{array}{l} \operatorname{Re}(z)=-12 \text { and } \\ \operatorname{Im}(z)=11 \end{array}
  1. Identifying the Complex Number: The complex number is given as z=12i+11 z = -12i + 11 . To find the real and imaginary parts of z z , we need to identify the terms without the imaginary unit i i as the real part, and the terms with the imaginary unit i i as the imaginary part.
  2. Finding the Real Part: The real part of the complex number zz is the term without the imaginary unit ii, which is 1111. Therefore, Re(z)=11\text{Re}(z) = 11.
  3. Finding the Imaginary Part: The imaginary part of the complex number zz is the term with the imaginary unit ii, which is 12i-12i. However, when we refer to the imaginary part, we only take the coefficient of ii, which is 12-12. Therefore, Im(z)=12\text{Im}(z) = -12.
  4. Matching with Given Choices: Now we can match our findings with the given choices. The correct choice should have Re(z)=11\text{Re}(z) = 11 and Im(z)=12\text{Im}(z) = -12.
  5. Correct Choice: Looking at the choices, we see that option (A) matches our findings: Re(z)=11\text{Re}(z) = 11 and Im(z)=12\text{Im}(z) = -12.

More problems from Domain and range