Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the product of (1p)(1 - p) and (12p)(\frac{1}{2} - p) all reduced by pp?

Full solution

Q. What is the product of (1p)(1 - p) and (12p)(\frac{1}{2} - p) all reduced by pp?
  1. Perform Multiplication: Now we will perform the multiplication for each term.\newline1×(12)=121 \times (\frac{1}{2}) = \frac{1}{2}\newline1×(p)=p1 \times (-p) = -p\newlinep×(12)=p2-p \times (\frac{1}{2}) = -\frac{p}{2}\newlinep×(p)=p2-p \times (-p) = p^2\newlineSo, (1p)(12p)=12pp2+p2(1 - p)(\frac{1}{2} - p) = \frac{1}{2} - p - \frac{p}{2} + p^2
  2. Combine Like Terms: Next, we combine like terms. \newline12pp2+p2=(12p2)p+p2\frac{1}{2} - p - \frac{p}{2} + p^2 = (\frac{1}{2} - \frac{p}{2}) - p + p^2\newline12p2=14\frac{1}{2} - \frac{p}{2} = \frac{1}{4}\newlineSo, (1p)(12p)=14p+p2(1 - p)(\frac{1}{2} - p) = \frac{1}{4} - p + p^2
  3. Reduce by pp: Now we need to reduce this expression by pp, which means we subtract pp from the expression we just found.\newline(14p+p2)p=14p+p2p(\frac{1}{4} - p + p^2) - p = \frac{1}{4} - p + p^2 - p
  4. Combine Like Terms: Finally, we combine the like terms which are the pp terms.14p+p2p=14+p22p\frac{1}{4} - p + p^2 - p = \frac{1}{4} + p^2 - 2p

More problems from Evaluate definite integrals using the chain rule