Q. What is the average value of h(x)=2x2−5x+4x3+7x2+3 on the interval [−8,−2] ?Use a graphing calculator and round your answer to three decimal places.
Calculate h(−8): Calculate h(−8) using the graphing calculator.h(−8)=((−8)3+7∗(−8)2+3)/(2∗(−8)2−5∗(−8)+4)h(−8)=((−512)+7∗(64)+3)/(2∗(64)−5∗(−8)+4)h(−8)=((−512)+448+3)/(128+40+4)h(−8)=(−61)/(172)h(−8)≈−0.355 (rounded to three decimal places)
Calculate h(−2): Calculate h(−2) using the graphing calculator.h(−2)=((−2)3+7∗(−2)2+3)/(2∗(−2)2−5∗(−2)+4)h(−2)=((−8)+7∗(4)+3)/(2∗(4)−5∗(−2)+4)h(−2)=(−8+28+3)/(8+10+4)h(−2)=23/22h(−2)≈1.045 (rounded to three decimal places)
Find average value: Find the average value of h(x) over the interval [−8,−2].Average value = −2−(−8)h(−2)−h(−8)Average value = 61.045−(−0.355)Average value = 61.045+0.355Average value = 61.4Average value ≈0.233 (rounded to three decimal places)