Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the average value of 
cos(x) on the interval 
[-2,7] ?
Choose 1 answer:
(A) 
(sin(7)+sin(2))/(9)
(B) 
(sin(7)-sin(2))/(9)
(C) 
(sin(7)+sin(2))/(5)
(D) 
(sin(7)-sin(2))/(5)

What is the average value of cos(x) \cos (x) on the interval [2,7] [-2,7] ?\newlineChoose 11 answer:\newline(A) sin(7)+sin(2)9 \frac{\sin (7)+\sin (2)}{9} \newline(B) sin(7)sin(2)9 \frac{\sin (7)-\sin (2)}{9} \newline(C) sin(7)+sin(2)5 \frac{\sin (7)+\sin (2)}{5} \newline(D) sin(7)sin(2)5 \frac{\sin (7)-\sin (2)}{5}

Full solution

Q. What is the average value of cos(x) \cos (x) on the interval [2,7] [-2,7] ?\newlineChoose 11 answer:\newline(A) sin(7)+sin(2)9 \frac{\sin (7)+\sin (2)}{9} \newline(B) sin(7)sin(2)9 \frac{\sin (7)-\sin (2)}{9} \newline(C) sin(7)+sin(2)5 \frac{\sin (7)+\sin (2)}{5} \newline(D) sin(7)sin(2)5 \frac{\sin (7)-\sin (2)}{5}
  1. Formula Application: To find the average value of a continuous function like cos(x)\cos(x) over an interval [a,b][a, b], we use the formula:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \cdot \int_{a}^{b} f(x) \, dx\newlineHere, f(x)=cos(x)f(x) = \cos(x), a=2a = -2, and b=7b = 7.
  2. Interval Width Calculation: First, we calculate the width of the interval, which is bab - a.\newlineWidth of interval = 7(2)=7+2=97 - (-2) = 7 + 2 = 9
  3. Integration of cos(x)\cos(x): Now, we need to integrate cos(x)\cos(x) from 2-2 to 77. The integral of cos(x)\cos(x) is sin(x)\sin(x), so we evaluate sin(x)\sin(x) from 2-2 to 77. 27cos(x)dx=sin(7)sin(2)\int_{-2}^{7} \cos(x) \, dx = \sin(7) - \sin(-2)
  4. Evaluation of Integral: Since sin(x)=sin(x)\sin(-x) = -\sin(x), we can rewrite sin(2)\sin(-2) as sin(2)-\sin(2). So, 27cos(x)dx=sin(7)(sin(2))=sin(7)+sin(2)\int_{-2}^{7} \cos(x) \, dx = \sin(7) - (-\sin(2)) = \sin(7) + \sin(2)
  5. Average Value Calculation: Now, we divide the result of the integration by the width of the interval to find the average value.\newlineAverage value = (19)(sin(7)+sin(2))(\frac{1}{9}) * (\sin(7) + \sin(2))
  6. Matching Answer Choice: We look at the given answer choices to find the one that matches our result.\newlineThe correct answer choice that matches our result is (A) (sin(7)+sin(2))/(9)(\sin(7)+\sin(2))/(9).

More problems from Domain and range