Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
80cm^(3). Alex measures the sides to be 
4.53cm by 
2.02cm by 
7.69cm. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 80 cm3 80 \mathrm{~cm}^{3} . Alex measures the sides to be 4.53 cm 4.53 \mathrm{~cm} by 2.02 cm 2.02 \mathrm{~cm} by 7.69 cm 7.69 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 80 cm3 80 \mathrm{~cm}^{3} . Alex measures the sides to be 4.53 cm 4.53 \mathrm{~cm} by 2.02 cm 2.02 \mathrm{~cm} by 7.69 cm 7.69 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Given: Given:\newline- The actual volume of the rectangular prism VactualV_{\text{actual}} = 8080 cm³\newline- The measured dimensions of the prism are 4.534.53 cm by 2.022.02 cm by 7.697.69 cm.\newlineFirst, we need to calculate the volume using the measured dimensions.\newlineVmeasured=length×width×heightV_{\text{measured}} = \text{length} \times \text{width} \times \text{height}
  2. Calculate volume: Calculate the measured volume:\newlineVmeasured=4.53cm×2.02cm×7.69cmV_{\text{measured}} = 4.53 \, \text{cm} \times 2.02 \, \text{cm} \times 7.69 \, \text{cm}\newlineVmeasured=70.300034cm3V_{\text{measured}} = 70.300034 \, \text{cm}^3
  3. Calculate absolute error: Now, we find the absolute error, which is the difference between the actual volume and the measured volume. Absolute error = VactualVmeasured|V_{\text{actual}} - V_{\text{measured}}|
  4. Calculate relative error: Calculate the absolute error:\newlineAbsolute error = 80cm370.300034cm3\lvert 80 \, \text{cm}^3 - 70.300034 \, \text{cm}^3 \rvert\newlineAbsolute error = 9.699966cm39.699966 \, \text{cm}^3
  5. Round relative error: Next, we calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error =Absolute errorVactual= \frac{\text{Absolute error}}{V_{\text{actual}}}
  6. Round relative error: Next, we calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}Calculate the relative error:\newlineRelative error = 9.699966cm380cm3\frac{9.699966 \, \text{cm}^3}{80 \, \text{cm}^3}\newlineRelative error = 0.1212495750.121249575
  7. Round relative error: Next, we calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error =Absolute errorVactual= \frac{\text{Absolute error}}{V_{\text{actual}}}Calculate the relative error:\newlineRelative error =9.699966cm380cm3= \frac{9.699966 \, \text{cm}^3}{80 \, \text{cm}^3}\newlineRelative error =0.121249575= 0.121249575Finally, we round the relative error to the nearest hundredth.\newlineRelative error (rounded) =0.12= 0.12

More problems from Find the rate of change of one variable when rate of change of other variable is given