Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
108ft^(3). David measures the sides to be 
6.14ft by 
3.44ft by 
5.8ft. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 108ft3 108 \mathrm{ft}^{3} . David measures the sides to be 6.14ft 6.14 \mathrm{ft} by 3.44ft 3.44 \mathrm{ft} by 5.8ft 5.8 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 108ft3 108 \mathrm{ft}^{3} . David measures the sides to be 6.14ft 6.14 \mathrm{ft} by 3.44ft 3.44 \mathrm{ft} by 5.8ft 5.8 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Given: Given:\newline- The actual volume of the rectangular prism VactualV_{\text{actual}} = 108108 ft³\newline- The measured dimensions are 6.146.14 ft by 3.443.44 ft by 5.85.8 ft.\newlineFirst, we need to calculate the volume using the measured dimensions.\newlineVmeasured=length×width×heightV_{\text{measured}} = \text{length} \times \text{width} \times \text{height}\newlineVmeasured=6.14V_{\text{measured}} = 6.14 ft ×3.44\times 3.44 ft ×5.8\times 5.8 ft
  2. Calculate Volume: Perform the multiplication to find the measured volume.\newlineVmeasured=6.14×3.44×5.8V_{\text{measured}} = 6.14 \times 3.44 \times 5.8\newlineVmeasured=115.08704 ft3V_{\text{measured}} = 115.08704 \text{ ft}^3
  3. Find Absolute Error: Now, we calculate the absolute error, which is the difference between the actual volume and the measured volume.\newlineAbsolute error = VmeasuredVactual|V_{\text{measured}} - V_{\text{actual}}|\newlineAbsolute error = 115.08704 ft3108 ft3|115.08704 \text{ ft}^3 - 108 \text{ ft}^3|
  4. Calculate Relative Error: Perform the subtraction to find the absolute error.\newlineAbsolute error = 115.08704 ft³108 ft³|115.08704 \text{ ft}³ - 108 \text{ ft}³|\newlineAbsolute error = 7.08704 ft³|7.08704 \text{ ft}³|
  5. Round Relative Error: Next, we calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}\newlineRelative error = 7.08704ft3108ft3\frac{7.08704 \, \text{ft}^3}{108 \, \text{ft}^3}
  6. Round Relative Error: Next, we calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}\newlineRelative error = 7.08704ft3108ft3\frac{7.08704 \, \text{ft}^3}{108 \, \text{ft}^3}Perform the division to find the relative error.\newlineRelative error = 7.08704ft3108ft3\frac{7.08704 \, \text{ft}^3}{108 \, \text{ft}^3}\newlineRelative error 0.06562037\approx 0.06562037
  7. Round Relative Error: Next, we calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}\newlineRelative error = 7.08704 ft3108 ft3\frac{7.08704 \text{ ft}^3}{108 \text{ ft}^3}Perform the division to find the relative error.\newlineRelative error = 7.08704 ft3108 ft3\frac{7.08704 \text{ ft}^3}{108 \text{ ft}^3}\newlineRelative error 0.06562037\approx 0.06562037Finally, we round the relative error to the nearest hundredth.\newlineRelative error 0.07\approx 0.07 (to the nearest hundredth)

More problems from Find the rate of change of one variable when rate of change of other variable is given