Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
504in^(3). Eric measures the sides to be 6.63 in by 7.76 in by 9.08 in. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 504in3 504 \mathrm{in}^{3} . Eric measures the sides to be 66.6363 in by 77.7676 in by 99.0808 in. In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 504in3 504 \mathrm{in}^{3} . Eric measures the sides to be 66.6363 in by 77.7676 in by 99.0808 in. In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Given: Given:\newlineActual volume VactualV_{\text{actual}} = 504504 in3^3\newlineMeasured sides: length ll = 6.636.63 in, width ww = 7.767.76 in, height hh = 9.089.08 in\newlineFirst, calculate the volume using the measured sides.\newlineVmeasured=l×w×hV_{\text{measured}} = l \times w \times h\newline50450400 in 50450411 in 50450422 in
  2. Calculate volume: Perform the multiplication to find the measured volume.\newlineVmeasured=6.63×7.76×9.08V_{\text{measured}} = 6.63 \times 7.76 \times 9.08\newlineVmeasured=467.04864 in3V_{\text{measured}} = 467.04864 \text{ in}^3
  3. Find absolute error: Now, calculate the absolute error, which is the difference between the actual volume and the measured volume.\newlineAbsolute error = VactualVmeasured|V_{\text{actual}} - V_{\text{measured}}|\newlineAbsolute error = 504467.04864|504 - 467.04864|
  4. Calculate relative error: Subtract the measured volume from the actual volume to find the absolute error. \newlineAbsolute error = 504467.04864|504 - 467.04864|\newlineAbsolute error = 36.9513636.95136 in³
  5. Express to nearest hundredth: Next, calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}\newlineRelative error = 36.95136504\frac{36.95136}{504}
  6. Express to nearest hundredth: Next, calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}\newlineRelative error = 36.95136504\frac{36.95136}{504} Perform the division to find the relative error.\newlineRelative error = 36.95136504\frac{36.95136}{504}\newlineRelative error 0.073318\approx 0.073318 in³/in³
  7. Express to nearest hundredth: Next, calculate the relative error, which is the absolute error divided by the actual volume.\newlineRelative error = Absolute errorVactual\frac{\text{Absolute error}}{V_{\text{actual}}}\newlineRelative error = 36.95136504\frac{36.95136}{504}Perform the division to find the relative error.\newlineRelative error = 36.95136504\frac{36.95136}{504}\newlineRelative error 0.073318\approx 0.073318 in³/in³Finally, express the relative error to the nearest hundredth.\newlineRelative error 0.07\approx 0.07 (to the nearest hundredth)

More problems from Find the rate of change of one variable when rate of change of other variable is given