Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
144ft^(3). Alex measures the sides to be 
2.63ft by 
7.54ft by 
6.13ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 144ft3 144 \mathrm{ft}^{3} . Alex measures the sides to be 2.63ft 2.63 \mathrm{ft} by 7.54ft 7.54 \mathrm{ft} by 6.13ft 6.13 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 144ft3 144 \mathrm{ft}^{3} . Alex measures the sides to be 2.63ft 2.63 \mathrm{ft} by 7.54ft 7.54 \mathrm{ft} by 6.13ft 6.13 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Given information: Given the volume of the rectangular prism is 144144 cubic feet, and Alex measures the sides to be 2.632.63 feet, 7.547.54 feet, and 6.136.13 feet. To find the relative error, we first need to calculate the volume using Alex's measurements.
  2. Calculate volume: Calculate the volume using Alex's measurements: Volume=length×width×height\text{Volume} = \text{length} \times \text{width} \times \text{height}.\newlineVolumecalculated=2.63ft×7.54ft×6.13ft\text{Volume}_{\text{calculated}} = 2.63 \, \text{ft} \times 7.54 \, \text{ft} \times 6.13 \, \text{ft}.\newlineVolumecalculated=121.6742ft3\text{Volume}_{\text{calculated}} = 121.6742 \, \text{ft}^3.
  3. Find absolute error: Now, we find the absolute error by subtracting the actual volume from the calculated volume.\newlineAbsolute error = VolumeactualVolumecalculated|\text{Volume}_{\text{actual}} - \text{Volume}_{\text{calculated}}|.\newlineAbsolute error = 144 ft3121.6742 ft3|144 \text{ ft}^3 - 121.6742 \text{ ft}^3|.\newlineAbsolute error = 22.3258 ft322.3258 \text{ ft}^3.
  4. Find relative error: To find the relative error, we divide the absolute error by the actual volume and then multiply by 100100 to get the percentage.\newlineRelative error = (Absolute error/Volumeactual)×100(\text{Absolute error} / \text{Volume}_{\text{actual}}) \times 100.\newlineRelative error = (22.3258 ft3/144 ft3)×100(22.3258 \text{ ft}^3 / 144 \text{ ft}^3) \times 100.\newlineRelative error = 0.1550395833×1000.1550395833 \times 100.\newlineRelative error = 15.50395833%15.50395833\%.
  5. Round relative error: Finally, we round the relative error to the nearest thousandth.\newlineRelative error (rounded) = 15.504%15.504\%.

More problems from Find the rate of change of one variable when rate of change of other variable is given