Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
54ft^(3). Carter measures the sides to be 
2.85ft by 
9.32ft by 
2.09ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 54ft3 54 \mathrm{ft}^{3} . Carter measures the sides to be 2.85ft 2.85 \mathrm{ft} by 9.32ft 9.32 \mathrm{ft} by 2.09ft 2.09 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 54ft3 54 \mathrm{ft}^{3} . Carter measures the sides to be 2.85ft 2.85 \mathrm{ft} by 9.32ft 9.32 \mathrm{ft} by 2.09ft 2.09 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Given: Given:\newlineActual volume VactualV_{\text{actual}} = 54ft354\,\text{ft}^3\newlineMeasured sides are 2.85ft2.85\,\text{ft}, 9.32ft9.32\,\text{ft}, and 2.09ft2.09\,\text{ft}.\newlineTo find the calculated volume VcalculatedV_{\text{calculated}}, we multiply the measured sides:\newlineVcalculated=2.85ft×9.32ft×2.09ftV_{\text{calculated}} = 2.85\,\text{ft} \times 9.32\,\text{ft} \times 2.09\,\text{ft}
  2. Perform multiplication: Perform the multiplication to find the calculated volume:\newlineVcalculated=2.85×9.32×2.09V_{\text{calculated}} = 2.85 \times 9.32 \times 2.09\newlineVcalculated=55.59666ft3V_{\text{calculated}} = 55.59666\text{ft}^3 (rounded to five decimal places for intermediate calculation)
  3. Calculate relative error: The relative error is calculated using the formula:\newlineRelative Error = VactualVcalculated/Vactual\left| V_{\text{actual}} - V_{\text{calculated}} \right| / V_{\text{actual}}\newlineFirst, find the absolute difference between the actual volume and the calculated volume:\newlineDifference = VactualVcalculated\left| V_{\text{actual}} - V_{\text{calculated}} \right|\newlineDifference = 5455.59666\left| 54 - 55.59666 \right|\newlineDifference = 1.596661.59666ft³ (rounded to five decimal places for intermediate calculation)
  4. Find absolute difference: Now, calculate the relative error using the difference found:\newlineRelative Error = DifferenceVactual\frac{\text{Difference}}{V_{\text{actual}}}\newlineRelative Error = 1.5966654\frac{1.59666}{54}\newlineRelative Error 0.029568\approx 0.029568 (rounded to six decimal places for intermediate calculation)
  5. Calculate relative error: Round the relative error to the nearest thousandth as requested:\newlineRelative Error 0.030\approx 0.030 (to the nearest thousandth)

More problems from Find the rate of change of one variable when rate of change of other variable is given