Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
360cm^(3). Alex measures the sides to be 
9.09cm by 
4.84cm by 
8.35cm. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 360 cm3 360 \mathrm{~cm}^{3} . Alex measures the sides to be 9.09 cm 9.09 \mathrm{~cm} by 4.84 cm 4.84 \mathrm{~cm} by 8.35 cm 8.35 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 360 cm3 360 \mathrm{~cm}^{3} . Alex measures the sides to be 9.09 cm 9.09 \mathrm{~cm} by 4.84 cm 4.84 \mathrm{~cm} by 8.35 cm 8.35 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Given: Given: \newlineThe actual volume of the rectangular prism VactualV_{\text{actual}} = 360cm3360\,\text{cm}^3\newlineMeasured dimensions: length ll = 9.09cm9.09\,\text{cm}, width ww = 4.84cm4.84\,\text{cm}, height hh = 8.35cm8.35\,\text{cm}\newlineCalculate the measured volume VmeasuredV_{\text{measured}} using the measured dimensions.\newlineVmeasured=l×w×hV_{\text{measured}} = l \times w \times h\newline360cm3360\,\text{cm}^300
  2. Calculate Volume: Perform the multiplication to find the measured volume.\newlineVmeasured=9.09cm×4.84cm×8.35cmV_{\text{measured}} = 9.09 \, \text{cm} \times 4.84 \, \text{cm} \times 8.35 \, \text{cm}\newlineVmeasured=367.03914cm3V_{\text{measured}} = 367.03914 \, \text{cm}^3
  3. Perform Multiplication: Calculate the absolute error, which is the difference between the measured volume and the actual volume.\newlineAbsolute error = VmeasuredVactual|V_{\text{measured}} - V_{\text{actual}}|\newlineAbsolute error = 367.03914cm3360cm3|367.03914 \, \text{cm}^3 - 360 \, \text{cm}^3|\newlineAbsolute error = 7.03914cm37.03914 \, \text{cm}^3
  4. Calculate Absolute Error: Calculate the relative error by dividing the absolute error by the actual volume and then multiplying by 100100 to get the percentage.Relative error=Absolute errorVactual×100\text{Relative error} = \frac{\text{Absolute error}}{V_{\text{actual}}} \times 100Relative error=7.03914cm3360cm3×100\text{Relative error} = \frac{7.03914 \, \text{cm}^3}{360 \, \text{cm}^3} \times 100
  5. Calculate Relative Error: Perform the division and multiplication to find the relative error.\newlineRelative error = (7.03914cm3/360cm3)×100(7.03914 \, \text{cm}^3 / 360 \, \text{cm}^3) \times 100\newlineRelative error = 0.01955317×1000.01955317 \times 100\newlineRelative error = 1.955317%1.955317\%
  6. Round Relative Error: Round the relative error to the nearest hundredth.\newlineRelative error 1.96%\approx 1.96\%

More problems from Find the rate of change of one variable when rate of change of other variable is given