Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
150cm^(3). Alex measures the sides to be 
9.89cm by 
3.43cm by 
5.08cm. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 150 cm3 150 \mathrm{~cm}^{3} . Alex measures the sides to be 9.89 cm 9.89 \mathrm{~cm} by 3.43 cm 3.43 \mathrm{~cm} by 5.08 cm 5.08 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 150 cm3 150 \mathrm{~cm}^{3} . Alex measures the sides to be 9.89 cm 9.89 \mathrm{~cm} by 3.43 cm 3.43 \mathrm{~cm} by 5.08 cm 5.08 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Volume: Given the volume of the rectangular prism is 150cm3150\,\text{cm}^3, and Alex measures the sides to be 9.89cm9.89\,\text{cm}, 3.43cm3.43\,\text{cm}, and 5.08cm5.08\,\text{cm}. First, we need to calculate the volume using Alex's measurements.\newlineVolume = length ×\times width ×\times height
  2. Find Absolute Error: Using Alex's measurements, we calculate the volume as follows:\newlineVolume = 9.89cm×3.43cm×5.08cm9.89 \, \text{cm} \times 3.43 \, \text{cm} \times 5.08 \, \text{cm}
  3. Calculate Relative Error: Perform the multiplication to find the calculated volume:\newlineCalculated Volume = 9.89×3.43×5.089.89 \times 3.43 \times 5.08\newlineCalculated Volume = 171.892524cm3171.892524 \, \text{cm}^3
  4. Round Relative Error: Now, we need to find the absolute error, which is the difference between the true volume and the calculated volume.\newlineAbsolute Error = True VolumeCalculated Volume|\text{True Volume} - \text{Calculated Volume}|
  5. Round Relative Error: Now, we need to find the absolute error, which is the difference between the true volume and the calculated volume.\newlineAbsolute Error = True VolumeCalculated Volume|\text{True Volume} - \text{Calculated Volume}|Substitute the given true volume and the calculated volume into the absolute error formula:\newlineAbsolute Error = 150 cm3171.892524 cm3|150 \text{ cm}^3 - 171.892524 \text{ cm}^3|\newlineAbsolute Error = 21.892524 cm3| -21.892524 \text{ cm}^3|\newlineAbsolute Error = 21.892524 cm321.892524 \text{ cm}^3
  6. Round Relative Error: Now, we need to find the absolute error, which is the difference between the true volume and the calculated volume.\newlineAbsolute Error = True VolumeCalculated Volume|\text{True Volume} - \text{Calculated Volume}|Substitute the given true volume and the calculated volume into the absolute error formula:\newlineAbsolute Error = 150 cm3171.892524 cm3|150 \text{ cm}^3 - 171.892524 \text{ cm}^3|\newlineAbsolute Error = 21.892524 cm3| -21.892524 \text{ cm}^3|\newlineAbsolute Error = 2121.892524892524 \text{ cm}^33Next, we find the relative error by dividing the absolute error by the true volume.\newlineRelative Error = \frac{\text{Absolute Error}}{\text{True Volume}}
  7. Round Relative Error: Now, we need to find the absolute error, which is the difference between the true volume and the calculated volume.\newlineAbsolute Error = True VolumeCalculated Volume|\text{True Volume} - \text{Calculated Volume}|Substitute the given true volume and the calculated volume into the absolute error formula:\newlineAbsolute Error = 150 cm3171.892524 cm3|150 \text{ cm}^3 - 171.892524 \text{ cm}^3|\newlineAbsolute Error = 21.892524 cm3| -21.892524 \text{ cm}^3|\newlineAbsolute Error = 2121.892524892524 \text{ cm}^33Next, we find the relative error by dividing the absolute error by the true volume.\newlineRelative Error = \frac{\text{Absolute Error}}{\text{True Volume}}Substitute the absolute error and the true volume into the relative error formula:\newlineRelative Error = \frac{2121.892524892524 \text{ cm}^33}{150150 \text{ cm}^33}
  8. Round Relative Error: Now, we need to find the absolute error, which is the difference between the true volume and the calculated volume.\newlineAbsolute Error = True VolumeCalculated Volume|\text{True Volume} - \text{Calculated Volume}|Substitute the given true volume and the calculated volume into the absolute error formula:\newlineAbsolute Error = 150 cm3171.892524 cm3|150 \text{ cm}^3 - 171.892524 \text{ cm}^3|\newlineAbsolute Error = 21.892524 cm3| -21.892524 \text{ cm}^3|\newlineAbsolute Error = 2121.892524892524 \text{ cm}^33Next, we find the relative error by dividing the absolute error by the true volume.\newlineRelative Error = \frac{\text{Absolute Error}}{\text{True Volume}}Substitute the absolute error and the true volume into the relative error formula:\newlineRelative Error = \frac{2121.892524892524 \text{ cm}^33}{150150 \text{ cm}^33}Perform the division to find the relative error:\newlineRelative Error = 00.1459501614595016
  9. Round Relative Error: Now, we need to find the absolute error, which is the difference between the true volume and the calculated volume.\newlineAbsolute Error = True VolumeCalculated Volume|\text{True Volume} - \text{Calculated Volume}|Substitute the given true volume and the calculated volume into the absolute error formula:\newlineAbsolute Error = 150 cm3171.892524 cm3|150 \text{ cm}^3 - 171.892524 \text{ cm}^3|\newlineAbsolute Error = 21.892524 cm3| -21.892524 \text{ cm}^3|\newlineAbsolute Error = 2121.892524892524 \text{ cm}^33Next, we find the relative error by dividing the absolute error by the true volume.\newlineRelative Error = \frac{\text{Absolute Error}}{\text{True Volume}}Substitute the absolute error and the true volume into the relative error formula:\newlineRelative Error = \frac{2121.892524892524 \text{ cm}^33}{150150 \text{ cm}^33}Perform the division to find the relative error:\newlineRelative Error = 00.1459501614595016To express the relative error to the nearest hundredth, we round the result to two decimal places:\newlineRelative Error \approx 00.1515

More problems from Find the rate of change of one variable when rate of change of other variable is given