Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The value of \newline13dx1+x2\int_{1}^{\sqrt{3}}\frac{dx}{1+x^{2}} is:\newline(a) π2\frac{\pi}{2}\newline(b) 2π3\frac{2\pi}{3}\newline(c) π6\frac{\pi}{6}\newline(d) π12\frac{\pi}{12}

Full solution

Q. The value of \newline13dx1+x2\int_{1}^{\sqrt{3}}\frac{dx}{1+x^{2}} is:\newline(a) π2\frac{\pi}{2}\newline(b) 2π3\frac{2\pi}{3}\newline(c) π6\frac{\pi}{6}\newline(d) π12\frac{\pi}{12}
  1. Recognize standard form: Recognize the integral as a standard form. The integral of 11+x2\frac{1}{1+x^2} is a standard form that is recognized as the inverse tangent function, arctan(x)\text{arctan}(x). Therefore, the integral can be written as: dx1+x2=arctan(x)+C\int \frac{\mathrm{d}x}{1+x^2} = \text{arctan}(x) + C
  2. Apply limits of integration: Apply the limits of integration. We need to evaluate the definite integral from 11 to 3\sqrt{3}, which means we will substitute these values into the antiderivative we found in Step 11: 13dx1+x2=arctan(3)arctan(1)\int_{1}^{\sqrt{3}}\frac{dx}{1+x^{2}} = \arctan(\sqrt{3}) - \arctan(1)
  3. Evaluate arctan function: Evaluate the arctan function at the limits. \newlinearctan(3)\arctan(\sqrt{3}) corresponds to the angle whose tangent is 3\sqrt{3}, which is π3\frac{\pi}{3} because tan(π3)=3\tan\left(\frac{\pi}{3}\right) = \sqrt{3}.\newlinearctan(1)\arctan(1) corresponds to the angle whose tangent is 11, which is π4\frac{\pi}{4} because tan(π4)=1\tan\left(\frac{\pi}{4}\right) = 1.
  4. Perform subtraction: Perform the subtraction to find the exact value.\newlineNow we subtract the two values:\newlinearctan(3)arctan(1)=(π3)(π4)\arctan(\sqrt{3}) - \arctan(1) = (\frac{\pi}{3}) - (\frac{\pi}{4})
  5. Simplify expression: Simplify the expression.\newlineTo subtract the fractions, find a common denominator, which is 1212 in this case:\newline(π/3)(π/4)=(4π/12)(3π/12)=(π/12)(\pi/3) - (\pi/4) = (4\pi/12) - (3\pi/12) = (\pi/12)

More problems from Evaluate definite integrals using the chain rule