Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

simplify the expression: 
(1×(((1)/(2))^(n)-1))/(((1)/(2)-1))





x
(
)
7
8
9

÷



◻^(2)

sqrt◻

(◻)/(◻)
4
5
6

x



int

(d)/(dx)

lim

1

2

3
-



sin

log

e^(◻)

*
0

=
+





larr

rarr

larr

x

Go

Simplify the expression: 1×((12)n1)(121)\frac{1\times\left(\left(\frac{1}{2}\right)^n-1\right)}{\left(\frac{1}{2}-1\right)}

Full solution

Q. Simplify the expression: 1×((12)n1)(121)\frac{1\times\left(\left(\frac{1}{2}\right)^n-1\right)}{\left(\frac{1}{2}-1\right)}
  1. Simplify Denominator: The question prompt is asking us to simplify the expression: (1×(((1)/(2))n1))/(((1)/(2)1))(1\times(((1)/(2))^{n}-1))/(((1)/(2)-1)). First, let's simplify the denominator: (1/2)1=1/22/2=1/2(1/2) - 1 = 1/2 - 2/2 = -1/2.
  2. Rewrite Expression: Now, let's rewrite the expression with the simplified denominator: 1×((12)n1)12\frac{1\times\left(\left(\frac{1}{2}\right)^n - 1\right)}{-\frac{1}{2}}.
  3. Multiply by Reciprocal: We can simplify the expression further by multiplying the numerator by the reciprocal of the denominator: 1×((12)n1)×(21)1\times\left(\left(\frac{1}{2}\right)^n - 1\right) \times \left(-\frac{2}{1}\right).
  4. Simplify Further: Multiplying through, we get: 2×((12)n1)=2×(12)n+2-2 \times \left(\left(\frac{1}{2}\right)^n - 1\right) = -2 \times \left(\frac{1}{2}\right)^n + 2.
  5. Write Final Answer: The expression is now simplified, and we can write the final answer.

More problems from Evaluate definite integrals using the chain rule