Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Does the converge or diverge? 
sum_(n=1)^(oo)(1)/(2^(n))=(1)/(2)+(1)/(4)+(1)/(8)+(1)/(16)+cdots

Does the series converge or diverge?n=112n=12+14+18+116+\sum_{n=1}^{\infty}\frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots

Full solution

Q. Does the series converge or diverge?n=112n=12+14+18+116+\sum_{n=1}^{\infty}\frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
  1. Given series: We are given the infinite geometric series n=112n \sum_{n=1}^{\infty} \frac{1}{2^n} . To find the sum of an infinite geometric series, we use the formula S=a1r S = \frac{a}{1 - r} , where a a is the first term and r r is the common ratio.\newlineIn our case, the first term a=12 a = \frac{1}{2} and the common ratio r=12 r = \frac{1}{2} .
  2. Formula application: Now we apply the formula for the sum of an infinite geometric series:\newlineS=a1r=12112 S = \frac{a}{1 - r} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} .
  3. Simplify expression: Simplify the expression:\newlineS=1212=1 S = \frac{\frac{1}{2}}{\frac{1}{2}} = 1 .
  4. Final result: The sum of the infinite series n=112n \sum_{n=1}^{\infty} \frac{1}{2^n} is 11.

More problems from Evaluate definite integrals using the chain rule