Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solved:
Integrate 3//(1+x^2) for a limit [0,1]

Solved:\newlineIntegrate 31+x2\frac{3}{1+x^2} for a limit [0,1][0,1]

Full solution

Q. Solved:\newlineIntegrate 31+x2\frac{3}{1+x^2} for a limit [0,1][0,1]
  1. Identify Integral: Identify the integral that needs to be solved.\newlineWe need to integrate the function 31+x2\frac{3}{1+x^2} with respect to xx over the interval [0,1][0,1].
  2. Recognize Standard Form: Recognize the standard integral form.\newlineThe integral of 11+x2\frac{1}{1+x^2} with respect to xx is a standard integral that equals arctan(x)\arctan(x) or tan1(x)\tan^{-1}(x).
  3. Apply Constant Multiple Rule: Apply the constant multiple rule. Since we have a constant multiple 33 outside the integral, we can pull it out in front of the integral sign. 31+x2dx=3×11+x2dx\int \frac{3}{1+x^2} \, dx = 3 \times \int \frac{1}{1+x^2} \, dx
  4. Integrate Using Standard Integral: Integrate using the standard integral.\newlineNow we integrate 1/(1+x2)1/(1+x^2) which is arctan(x)\arctan(x).\newline11+x2dx=arctan(x)\int \frac{1}{1+x^2} \, dx = \arctan(x)
  5. Apply Constant to Antiderivative: Apply the constant to the antiderivative.\newlineMultiplying the antiderivative by the constant 33, we get:\newline3×arctan(x)3 \times \text{arctan}(x)
  6. Evaluate Antiderivative Bounds: Evaluate the antiderivative from 00 to 11. We need to evaluate 3×arctan(x)3 \times \arctan(x) at x=1x=1 and x=0x=0 and then subtract the latter from the former. 3×arctan(1)3×arctan(0)3 \times \arctan(1) - 3 \times \arctan(0)
  7. Calculate Arctan Values: Calculate the values of arctan at the bounds.\newlinearctan(11) = π4\frac{\pi}{4} (since tan(π4)=1\tan(\frac{\pi}{4}) = 1)\newlinearctan(00) = 00 (since tan(0)=0\tan(0) = 0)
  8. Substitute Values: Substitute the values into the expression.\newline3×(π/4)3×0=3π40=3π43 \times (\pi/4) - 3 \times 0 = \frac{3\pi}{4} - 0 = \frac{3\pi}{4}
  9. Write Final Answer: Write the final answer.\newlineThe integral of 31+x2\frac{3}{1+x^2} from 00 to 11 is 3π4\frac{3\pi}{4}.

More problems from Divide numbers written in scientific notation