Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(5-5i)*(-3+5i)

+x

Multiply and simplify the following complex numbers:\newline(55i)(3+5i) (5-5 i) \cdot(-3+5 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(55i)(3+5i) (5-5 i) \cdot(-3+5 i)
  1. Distribute terms: Distribute each term in the first complex number by each term in the second complex number.\newline(55i)(3+5i)=5(3)+5(5i)5i(3)5i(5i)(5-5i)(-3+5i) = 5(-3) + 5(5i) - 5i(-3) - 5i(5i)
  2. Multiply terms: Multiply the terms.\newline5(3)=155 \cdot (-3) = -15\newline5(5i)=25i5 \cdot (5i) = 25i\newline5i(3)=15i-5i \cdot (-3) = 15i\newline5i(5i)=25i2-5i \cdot (5i) = -25i^2
  3. Combine like terms: Combine like terms and remember that i2=1i^2 = -1.\newline15+25i+15i25(1)-15 + 25i + 15i - 25(-1)
  4. Simplify expression: Simplify the expression. 15+40i+25-15 + 40i + 25
  5. Combine real and imaginary parts: Combine the real parts and the imaginary parts.\newline(2515)+40i(25 - 15) + 40i
  6. Finish simplifying: Finish simplifying by adding the real numbers together.\newline2515=1025 - 15 = 10\newlineSo, the final answer is 10+40i10 + 40i.

More problems from Multiply numbers written in scientific notation