Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(5+2i)*(-5-i)

Multiply and simplify the following complex numbers:\newline(5+2i)(5i) (5+2 i) \cdot(-5-i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(5+2i)(5i) (5+2 i) \cdot(-5-i)
  1. Distribute terms: Distribute each term of the first complex number by each term of the second complex number.\newline(5+2i)(5i)=5(5)+5(i)+2i(5)+2i(i)(5+2i)(-5-i) = 5(-5) + 5(-i) + 2i(-5) + 2i(-i)
  2. Multiply real and imaginary parts: Multiply the real parts and the imaginary parts separately.\newline5(5)=255\cdot(-5) = -25 (Real part)\newline5(i)=5i5\cdot(-i) = -5i (Imaginary part)\newline2i(5)=10i2i\cdot(-5) = -10i (Imaginary part)\newline2i(i)=2i22i\cdot(-i) = 2i^2 (Since i2=1i^2 = -1, this will result in a real number)
  3. Combine like terms: Combine the like terms and simplify the expression.25+(5i)+(10i)+2(1)=255i10i2-25 + (-5i) + (-10i) + 2(-1) = -25 - 5i - 10i - 2
  4. Add real and imaginary numbers: Add the real numbers and the imaginary numbers separately.\newline(252)+(5i10i)=2715i(-25 - 2) + (-5i - 10i) = -27 - 15i
  5. Final simplified form: Write the final simplified form of the product of the two complex numbers.\newlineThe product is 2715i-27 - 15i.

More problems from Multiply numbers written in scientific notation