Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(4+4i)*(-2-5i)

-x
+1

Multiply and simplify the following complex numbers:\newline(4+4i)(25i) (4+4 i) \cdot(-2-5 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(4+4i)(25i) (4+4 i) \cdot(-2-5 i)
  1. Distribute terms: Distribute each term of the first complex number by each term of the second complex number.\newline(4+4i)×(25i)=4×(2)+4×(5i)+4i×(2)+4i×(5i)(4+4i) \times (-2-5i) = 4\times(-2) + 4\times(-5i) + 4i\times(-2) + 4i\times(-5i)
  2. Multiply real and imaginary parts: Multiply the real parts and the imaginary parts.\newline4(2)=84 \cdot (-2) = -8 (Real part)\newline4(5i)=20i4 \cdot (-5i) = -20i (Imaginary part)\newline4i(2)=8i4i \cdot (-2) = -8i (Imaginary part)\newline4i(5i)=20i24i \cdot (-5i) = -20i^2 (Since i2=1i^2 = -1, this becomes a real part)
  3. Combine and simplify: Combine like terms and simplify.\newline8-8 (Real part from step 22) + (20i8i)(-20i - 8i) (Sum of Imaginary parts from step 22) - 20i220i^2 (Real part from step 22, remembering that i2=1i^2 = -1)\newline828i+20(1)-8 - 28i + 20(-1)
  4. Add real numbers: Simplify the expression by combining real parts and imaginary parts. 828i20-8 - 28i - 20
  5. Write final answer: Add the real numbers together.\newline820=28-8 - 20 = -28
  6. Write final answer: Add the real numbers together.\newline820=28-8 - 20 = -28Write the final answer in the form of a complex number a+bia + bi.\newline2828i-28 - 28i

More problems from Multiply numbers written in scientific notation