Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve using elimination.
\newline
6
x
+
6
y
=
6
6x + 6y = 6
6
x
+
6
y
=
6
\newline
–
3
x
−
6
y
=
18
–3x − 6y = 18
–3
x
−6
y
=
18
\newline
(_____, _____)
View step-by-step help
Home
Math Problems
Grade 8
Solve a system of equations using elimination
Full solution
Q.
Solve using elimination.
\newline
6
x
+
6
y
=
6
6x + 6y = 6
6
x
+
6
y
=
6
\newline
–
3
x
−
6
y
=
18
–3x − 6y = 18
–3
x
−6
y
=
18
\newline
(_____, _____)
Write Equations:
Write down the
system of equations
.
\newline
6
x
+
6
y
=
6
6x + 6y = 6
6
x
+
6
y
=
6
\newline
–
3
x
−
6
y
=
18
–3x − 6y = 18
–3
x
−6
y
=
18
Add Equations:
Add the two equations together to eliminate the
y
y
y
variable.
\newline
(
6
x
+
6
y
)
+
(
–
3
x
−
6
y
)
=
6
+
18
(6x + 6y) + (–3x − 6y) = 6 + 18
(
6
x
+
6
y
)
+
(
–3
x
−6
y
)
=
6
+
18
Perform Addition:
Perform the addition.
6
x
−
3
x
+
6
y
−
6
y
=
24
6x - 3x + 6y - 6y = 24
6
x
−
3
x
+
6
y
−
6
y
=
24
Simplify Equation:
Simplify the equation.
3
x
=
24
3x = 24
3
x
=
24
Solve for x:
Solve for x by dividing both sides of the equation by
3
3
3
.
\newline
3
x
3
=
24
3
\frac{3x}{3} = \frac{24}{3}
3
3
x
=
3
24
Calculate
x
x
x
:
Calculate the value of
x
x
x
.
x
=
8
x = 8
x
=
8
Substitute for y:
Substitute the value of
x
x
x
back into one of the original equations to solve for
y
y
y
. We can use the first equation.
6
(
8
)
+
6
y
=
6
6(8) + 6y = 6
6
(
8
)
+
6
y
=
6
Perform Multiplication:
Perform the multiplication.
48
+
6
y
=
6
48 + 6y = 6
48
+
6
y
=
6
Subtract
48
48
48
:
Subtract
48
48
48
from both sides of the equation to solve for
y
y
y
.
\newline
6
y
=
6
−
48
6y = 6 - 48
6
y
=
6
−
48
Calculate
y
y
y
:
Calculate the value of
y
y
y
.
6
y
=
−
42
6y = -42
6
y
=
−
42
y
=
−
42
6
y = \frac{-42}{6}
y
=
6
−
42
Final y:
Calculate the final value of
y
y
y
.
y
=
−
7
y = -7
y
=
−
7
More problems from Solve a system of equations using elimination
Question
Solve using substitution.
5
x
−
2
y
=
−
7
5x - 2y = -7
5
x
−
2
y
=
−
7
x
=
−
5
x = -5
x
=
−
5
(_,_)
Get tutor help
Posted 5 months ago
Question
Is
(
1
,
1
)
(1,1)
(
1
,
1
)
a solution to this system of equations?
\newline
4
x
+
10
y
=
14
4x + 10y = 14
4
x
+
10
y
=
14
\newline
x
+
6
y
=
7
x + 6y = 7
x
+
6
y
=
7
\newline
Choices:
\newline
(A) yes
\newline
(B) no
Get tutor help
Posted 5 months ago
Question
Which describes the system of equations below?
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
Choices:
\newline
(A) consistent and independent
\text{(A) consistent and independent}
(A) consistent and independent
\newline
(B) consistent and dependent
\text{(B) consistent and dependent}
(B) consistent and dependent
\newline
(C) inconsistent
\text{(C) inconsistent}
(C) inconsistent
Get tutor help
Posted 5 months ago
Question
Solve using elimination.
\newline
7
x
−
8
y
=
−
17
7x - 8y = -17
7
x
−
8
y
=
−
17
\newline
−
7
x
+
3
y
=
2
-7x + 3y = 2
−
7
x
+
3
y
=
2
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 5 months ago
Question
Solve.
\newline
x
=
−
2
x = -2
x
=
−
2
\newline
−
2
x
+
2
y
=
−
8
-2x + 2y = -8
−
2
x
+
2
y
=
−
8
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 8 months ago
Question
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
\newline
At a community barbecue, Mrs. Wilkerson and Mr. Hogan are buying dinner for their families. Mrs. Wilkerson purchases
3
3
3
hot dog meals and
3
3
3
hamburger meals, paying a total of
$
36
\$36
$36
. Mr. Hogan buys
1
1
1
hot dog meal and
3
3
3
hamburger meals, spending
$
26
\$26
$26
in all. How much do the meals cost?
\newline
Hot dog meals cost
$
\$
$
_______ each, and hamburger meals cost
$
\$
$
________ each.
Get tutor help
Posted 8 months ago
Question
Solve the system of equations by substitution.
\newline
−
3
x
−
y
−
3
z
=
−
11
-3x - y - 3z = -11
−
3
x
−
y
−
3
z
=
−
11
\newline
z
=
5
z = 5
z
=
5
\newline
x
−
y
+
3
z
=
19
x - y + 3z = 19
x
−
y
+
3
z
=
19
\newline
(____.____,____)
Get tutor help
Posted 5 months ago
Question
Solve the system of equations by elimination.
\newline
x
−
3
y
−
2
z
=
10
x - 3y - 2z = 10
x
−
3
y
−
2
z
=
10
\newline
3
x
+
2
y
+
2
z
=
14
3x + 2y + 2z = 14
3
x
+
2
y
+
2
z
=
14
\newline
2
x
−
3
y
−
2
z
=
16
2x - 3y - 2z = 16
2
x
−
3
y
−
2
z
=
16
\newline
(
_
,
_
,
_
)
(\_,\_,\_)
(
_
,
_
,
_
)
Get tutor help
Posted 5 months ago
Question
Solve the system of equations.
\newline
y
=
x
2
+
36
x
+
3
y = x^2 + 36x + 3
y
=
x
2
+
36
x
+
3
\newline
y
=
22
x
−
37
y = 22x - 37
y
=
22
x
−
37
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 5 months ago
Question
Solve the system of equations.
\newline
y
=
−
x
−
24
y = -x - 24
y
=
−
x
−
24
\newline
x
2
+
y
2
=
488
x^2 + y^2 = 488
x
2
+
y
2
=
488
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 5 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant