Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x24 y = -x - 24 \newlinex2+y2=488 x^2 + y^2 = 488 \newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(_,_) (\_,\_) \newline(_,_) (\_,\_)

Full solution

Q. Solve the system of equations.\newliney=x24 y = -x - 24 \newlinex2+y2=488 x^2 + y^2 = 488 \newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(_,_) (\_,\_) \newline(_,_) (\_,\_)
  1. Substitute and Simplify: Substitute the expression for yy from the first equation into the second equation.\newlineGiven the system of equations:\newliney=x24y = -x - 24\newlinex2+y2=488x^2 + y^2 = 488\newlineWe substitute yy in the second equation with the expression from the first equation:\newlinex2+(x24)2=488x^2 + (-x - 24)^2 = 488
  2. Expand and Combine Terms: Expand the squared term and simplify the equation.\newlinex2+(x24)2=488x^2 + (-x - 24)^2 = 488\newlinex2+(x2+48x+576)=488x^2 + (x^2 + 48x + 576) = 488\newlineCombine like terms:\newline2x2+48x+576=4882x^2 + 48x + 576 = 488
  3. Move and Simplify Further: Move all terms to one side to set the equation to zero and simplify further.\newline2x2+48x+576488=02x^2 + 48x + 576 - 488 = 0\newline2x2+48x+88=02x^2 + 48x + 88 = 0\newlineDivide the entire equation by 22 to simplify:\newlinex2+24x+44=0x^2 + 24x + 44 = 0
  4. Factor the Quadratic: Factor the quadratic equation.\newlineWe look for two numbers that multiply to 4444 and add up to 2424. These numbers are 2222 and 22.\newline(x+22)(x+2)=0(x + 22)(x + 2) = 0
  5. Solve for x: Solve for x by setting each factor equal to zero.\newlinex+22=0x + 22 = 0 or x+2=0x + 2 = 0\newlinex=22x = -22 or x=2x = -2
  6. Find y-Values: Find the corresponding y-values for each x-value by substituting back into the first equation.\newlineFor x=22x = -22:\newliney=(22)24y = -(-22) - 24\newliney=2224y = 22 - 24\newliney=2y = -2\newlineFor x=2x = -2:\newliney=(2)24y = -(-2) - 24\newliney=224y = 2 - 24\newliney=22y = -22
  7. Write Coordinates: Write the coordinates in exact form.\newlineThe solutions to the system of equations are the points where the values of xx and yy satisfy both equations. Therefore, the coordinates are:\newline(22,2)(-22, -2) and (2,22)(-2, -22)

More problems from Solve a system of linear and quadratic equations: circles