Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using elimination.\newline2x2y=10-2x - 2y = 10\newline4x2y=44x - 2y = 4\newline(_____, _____)

Full solution

Q. Solve using elimination.\newline2x2y=10-2x - 2y = 10\newline4x2y=44x - 2y = 4\newline(_____, _____)
  1. Write Equations: First, let's write down the system of equations:\newline2x2y=10-2x - 2y = 10\newline4x2y=44x - 2y = 4\newlineTo use elimination, we want to add or subtract the equations to eliminate one of the variables. In this case, we can add the two equations together to eliminate the yy variable.
  2. Add Equations: Now, let's add the two equations:\newline(2x2y)+(4x2y)=10+4(-2x - 2y) + (4x - 2y) = 10 + 4\newlineThis simplifies to:\newline2x+4x2y2y=14-2x + 4x - 2y - 2y = 14
  3. Combine Terms: Combining like terms gives us: 2x=142x = 14
  4. Solve for x: Next, we solve for x by dividing both sides of the equation by 22:\newline2x2=142\frac{2x}{2} = \frac{14}{2}\newlineThis gives us:\newlinex=7x = 7
  5. Substitute xx: Now that we have the value of xx, we can substitute it back into one of the original equations to find the value of yy. Let's use the first equation:\newline2x2y=10–2x − 2y = 10\newlineSubstituting x=7x = 7, we get:\newline2(7)2y=10–2(7) − 2y = 10
  6. Simplify Equation: Simplifying the equation, we have: 142y=10-14 - 2y = 10
  7. Isolate y Term: Now, we add 1414 to both sides to isolate the term with yy: \newline14+142y=10+14-14 + 14 - 2y = 10 + 14\newlineThis simplifies to:\newline2y=24-2y = 24
  8. Solve for y: Finally, we divide both sides by 2-2 to solve for yy:2y2=242\frac{-2y}{-2} = \frac{24}{-2}This gives us:y=12y = -12

More problems from Solve a system of equations using elimination