Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using augmented matrices.\newlinex=7x = 7\newline3x+3y=183x + 3y = 18\newline(_____, _____)

Full solution

Q. Solve using augmented matrices.\newlinex=7x = 7\newline3x+3y=183x + 3y = 18\newline(_____, _____)
  1. Write Equations in Matrix Form: First, let's write the system of equations in matrix form. We have x=7x = 7 and 3x+3y=183x + 3y = 18. The augmented matrix is: 1amp;0amp;amp;7 3amp;3amp;amp;18\begin{matrix} 1 & 0 & | & 7 \ 3 & 3 & | & 18 \end{matrix}
  2. Eliminate X-Term: Now, we need to use the first equation to eliminate the xx-term from the second equation in the matrix.\newlineWe can multiply the first row by 3-3 and add it to the second row.\newline3×[107]=[3021]-3 \times [1 0 | 7] = [-3 0 | -21]\newlineAdding this to the second row:\newline[3318]+[3021]=[033][3 3 | 18] + [-3 0 | -21] = [0 3 | -3]
  3. Solve for Y: The new matrix is:\newline1amp;0amp;amp;7 0amp;3amp;amp;3\begin{matrix} 1 & 0 & | & 7 \ 0 & 3 & | & -3 \end{matrix}\newlineNow we can solve for yy by dividing the second row by 33.\newline0amp;3amp;amp;3\begin{matrix} 0 & 3 & | & -3 \end{matrix} ÷3=0amp;1amp;amp;1\div 3 = \begin{matrix} 0 & 1 & | & -1 \end{matrix}
  4. Final Matrix: The final matrix is:\newline\begin{array}{cc|c} 1 & 0 & 7 \ 0 & 1 & -1 \end{array}\newlineThis tells us that x=7x = 7 and y=1y = -1.

More problems from Solve a system of equations using elimination