Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using augmented matrices.\newline9x9y=18-9x - 9y = 18\newlinex=2x = 2\newline(_____, _____)

Full solution

Q. Solve using augmented matrices.\newline9x9y=18-9x - 9y = 18\newlinex=2x = 2\newline(_____, _____)
  1. Write Equations in Matrix Form: First, let's write the system of equations in matrix form. We have:\newline9x9y=18-9x - 9y = 18\newlinex=2x = 2\newlineThis can be written as:\newline[9amp;9amp;amp;18 1amp;0amp;amp;2]\begin{bmatrix} -9 & -9 & | & 18 \ 1 & 0 & | & 2 \end{bmatrix}
  2. Eliminate x-term: Now, we need to use the second equation to eliminate the x-term in the first equation. We can multiply the second row by 99 and add it to the first row.\newline9×[1amp;0amp;2]=[9amp;0amp;18]9 \times \left[ \begin{array}{cc|c} 1 & 0 & 2 \end{array} \right] = \left[ \begin{array}{cc|c} 9 & 0 & 18 \end{array} \right]\newlineAdding this to the first row:\newline[9amp;9amp;18]+[9amp;0amp;18]=[0amp;9amp;36]\left[ \begin{array}{cc|c} -9 & -9 & 18 \end{array} \right] + \left[ \begin{array}{cc|c} 9 & 0 & 18 \end{array} \right] = \left[ \begin{array}{cc|c} 0 & -9 & 36 \end{array} \right]\newlineSo the new matrix is:\newline[0amp;9amp;36]\left[ \begin{array}{cc|c} 0 & -9 & 36 \end{array} \right]\newline[1amp;0amp;2]\left[ \begin{array}{cc|c} 1 & 0 & 2 \end{array} \right]
  3. Solve for yy: Now we can solve for yy by dividing the first row by 9–9.[0936]÷9=[014]\left[ 0 \quad –9 \mid 36 \right] \div –9 = \left[ 0 \quad 1 \mid –4 \right]So y=4y = –4.
  4. Find Solution: We already know xx from the second equation, which is x=2x = 2. So the solution to the system is (x,y)=(2,4)(x, y) = (2, -4).

More problems from Solve a system of equations using elimination