Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve using augmented matrices.\newline7x10y=27x - 10y = 2\newlinex=6x = 6\newline(_____, _____)

Full solution

Q. Solve using augmented matrices.\newline7x10y=27x - 10y = 2\newlinex=6x = 6\newline(_____, _____)
  1. Write Augmented Matrix: First, let's write the system of equations as an augmented matrix.\newlineWe have the equations:\newline7x10y=27x − 10y = 2\newlinex=6x = 6\newlineThis can be written as:\newline\begin{bmatrix}7 & -10 & | & 2\1 & 0 & | & 6\end{bmatrix}
  2. Swap Rows: Now, let's use the second equation to make the first element of the first row a 11 by swapping rows.\newlineSwap R1R_1 with R2R_2:\newline \begin{array}{cc|c} 1 & 0 & 6 \ 7 & -10 & 2 \end{array}
  3. Make First Element 00: Next, we need to make the first element of the second row a 00 by using row operations.\newlineWe can multiply the first row by 7-7 and add it to the second row.\newline7×R1+R2R2-7 \times R1 + R2 \rightarrow R2:\newline[1amp;0amp;6 0amp;10amp;40]\begin{bmatrix} 1 & 0 | & 6 \ 0 & -10 | & -40 \end{bmatrix}
  4. Make Second Element 11: Now, let's divide the second row by 10-10 to make the second element of the second row a 11. \newlineR2/10R2R2 / -10 \rightarrow R2: \newline[1amp;0amp;amp;6 0amp;1amp;amp;4]\begin{bmatrix} 1 & 0 & | & 6 \ 0 & 1 & | & 4 \end{bmatrix}
  5. Final System of Equations: We have the matrix in reduced row echelon form, which corresponds to the system:\newlinex=6x = 6\newliney=4y = 4

More problems from Solve a system of equations using any method