Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x26x27y = x^2 - 6x - 27\newliney=6x+9y = -6x + 9\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=x26x27y = x^2 - 6x - 27\newliney=6x+9y = -6x + 9\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: We have the system of equations:\newliney=x26x27y = x^2 - 6x - 27\newliney=6x+9y = -6x + 9\newlineSet the two equations equal to each other to find the xx-values where they intersect.\newlinex26x27=6x+9x^2 - 6x - 27 = -6x + 9
  2. Simplify and Rearrange: Simplify the equation by adding 6x6x to both sides and subtracting 99 from both sides to get the quadratic equation in standard form.\newlinex26x27+6x9=6x+9+6x9x^2 - 6x - 27 + 6x - 9 = -6x + 9 + 6x - 9\newlinex236=0x^2 - 36 = 0
  3. Factor Quadratic Equation: Factor the quadratic equation.\newlinex236=(x6)(x+6)x^2 - 36 = (x - 6)(x + 6)\newlineSet each factor equal to zero to solve for xx.\newline(x6)=0(x - 6) = 0 or (x+6)=0(x + 6) = 0\newlinex=6x = 6 or x=6x = -6
  4. Find y-values: Find the corresponding y-values for each xx-value by substituting xx back into one of the original equations. We can use y=6x+9y = -6x + 9.\newlineFor x=6x = 6:\newliney=6(6)+9y = -6(6) + 9\newliney=36+9y = -36 + 9\newliney=27y = -27
  5. Substitute x-values: Find the corresponding y-value for x=6x = -6:\newliney=6(6)+9y = -6(-6) + 9\newliney=36+9y = 36 + 9\newliney=45y = 45
  6. Write Coordinates: Write the coordinates in exact form.\newlineThe first coordinate is (6,27)(6, -27).\newlineThe second coordinate is (6,45)(-6, 45).

More problems from Solve a system of linear and quadratic equations: parabolas