Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x22x5y = x^2 - 2x - 5\newliney=2x+44y = -2x + 44\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=x22x5y = x^2 - 2x - 5\newliney=2x+44y = -2x + 44\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: We have the system of equations:\newliney=x22x5y = x^2 - 2x - 5\newliney=2x+44y = -2x + 44\newlineTo find the intersection points, we set the two equations equal to each other.\newlinex22x5=2x+44x^2 - 2x - 5 = -2x + 44
  2. Simplify Quadratic Equation: Simplify the equation by moving all terms to one side to form a standard quadratic equation.\newlinex22x5+2x44=0x^2 - 2x - 5 + 2x - 44 = 0\newlinex249=0x^2 - 49 = 0
  3. Solve for x: Solve the quadratic equation for x.\newlinex2=49x^2 = 49\newlineTake the square root of both sides.\newlinex=±49x = \pm\sqrt{49}\newlinex=±7x = \pm7
  4. Find y-values: Find the corresponding y-values for each x-value by substituting back into one of the original equations. Let's use y=2x+44y = -2x + 44.\newlineFirst, for x=7x = 7:\newliney=2(7)+44y = -2(7) + 44\newliney=14+44y = -14 + 44\newliney=30y = 30\newlineSecond, for x=7x = -7:\newliney=2(7)+44y = -2(-7) + 44\newliney=14+44y = 14 + 44\newliney=58y = 58
  5. Write Coordinates: Write the coordinates in exact form.\newlineThe first coordinate is (7,30)(7, 30).\newlineThe second coordinate is (7,58)(-7, 58).

More problems from Solve a system of linear and quadratic equations: parabolas