Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x2+17x1y = x^2 + 17x - 1\newliney=7x24y = -7x - 24\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=x2+17x1y = x^2 + 17x - 1\newliney=7x24y = -7x - 24\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other to find the xx-values where the graphs intersect.\newliney=x2+17x1y = x^2 + 17x - 1\newliney=7x24y = -7x - 24\newlinex2+17x1=7x24x^2 + 17x - 1 = -7x - 24
  2. Move and Form Quadratic Equation: Move all terms to one side to form a quadratic equation.\newlinex2+17x1+7x+24=0x^2 + 17x - 1 + 7x + 24 = 0\newlinex2+24x+23=0x^2 + 24x + 23 = 0
  3. Factor Quadratic Equation: Factor the quadratic equation.\newlinex2+24x+23=0x^2 + 24x + 23 = 0\newlineThe factors of 2323 that add up to 2424 are 11 and 2323.\newline(x+1)(x+23)=0(x + 1)(x + 23) = 0
  4. Solve for x: Solve for x by setting each factor equal to zero.\newline(x+1)=0(x + 1) = 0 or (x+23)=0(x + 23) = 0\newlinex=1x = -1 or x=23x = -23
  5. Substitute and Find yy: Substitute the xx-values back into one of the original equations to find the corresponding yy-values.\newlineFor x=1x = -1:\newliney=7(1)24y = -7(-1) - 24\newliney=724y = 7 - 24\newliney=17y = -17\newlineFor x=23x = -23:\newliney=7(23)24y = -7(-23) - 24\newliney=16124y = 161 - 24\newlinexx00
  6. Write Coordinates: Write the coordinates in exact form.\newlineThe coordinates of the intersection points are (1,17)(-1, -17) and (23,137)(-23, 137).

More problems from Solve a system of linear and quadratic equations: parabolas