Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=50x+78y = -50x + 78\newliney=x250x43y = x^2 - 50x - 43\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=50x+78y = -50x + 78\newliney=x250x43y = x^2 - 50x - 43\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: We have the system of equations:\newliney=50x+78y = -50x + 78\newliney=x250x43y = x^2 - 50x - 43\newlineSet the two equations equal to each other to find the xx-values where they intersect.\newline50x+78=x250x43-50x + 78 = x^2 - 50x - 43
  2. Simplify Quadratic Equation: Simplify the equation by moving all terms to one side to form a quadratic equation.\newline0=x250x43+50x780 = x^2 - 50x - 43 + 50x - 78\newline0=x21210 = x^2 - 121
  3. Factor Quadratic Equation: Factor the quadratic equation.\newline0=(x11)(x+11)0 = (x - 11)(x + 11)
  4. Solve for x: Solve for x by setting each factor equal to zero.\newline(x11)=0(x - 11) = 0 or (x+11)=0(x + 11) = 0\newlinex=11x = 11 or x=11x = -11
  5. Find Corresponding y-values: Find the corresponding y-values for each x-value by substituting back into one of the original equations. Let's use y=50x+78y = -50x + 78.\newlineFor x=11x = 11:\newliney=50(11)+78y = -50(11) + 78\newliney=550+78y = -550 + 78\newliney=472y = -472\newlineFor x=11x = -11:\newliney=50(11)+78y = -50(-11) + 78\newliney=550+78y = 550 + 78\newliney=628y = 628
  6. Write Coordinates: Write the coordinates in exact form.\newlineFirst Coordinate: (11,472)(11, -472)\newlineSecond Coordinate: (11,628)(-11, 628)

More problems from Solve a system of linear and quadratic equations: parabolas