Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=47x+45y = -47x + 45\newliney=x247x19y = x^2 - 47x - 19\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=47x+45y = -47x + 45\newliney=x247x19y = x^2 - 47x - 19\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.47x+45=x247x19-47x + 45 = x^2 - 47x - 19
  2. Move Terms, Set to Zero: Move all terms to one side to set the equation to zero.\newline0=x247x+47x19450 = x^2 - 47x + 47x - 19 - 45
  3. Simplify Equation: Simplify the equation by combining like terms.\newline0=x2640 = x^2 - 64
  4. Factor Quadratic: Factor the quadratic equation.\newline0=(x8)(x+8)0 = (x - 8)(x + 8)
  5. Solve for x: Set each factor equal to zero and solve for x.\newlinex8=0x - 8 = 0 and x+8=0x + 8 = 0\newlinex=8x = 8 and x=8x = -8
  6. Substitute xx, Find yy: Substitute x=8x = 8 into one of the original equations to find yy.y=47(8)+45y = -47(8) + 45y=376+45y = -376 + 45y=331y = -331
  7. Substitute x=8x = -8, Find yy: Substitute x=8x = -8 into the same original equation to find yy.\newliney=47(8)+45y = -47(-8) + 45\newliney=376+45y = 376 + 45\newliney=421y = 421
  8. Write Coordinates: Write the coordinates in exact form.\newlineFirst Coordinate: (8,331)(8, -331)\newlineSecond Coordinate: (8,421)(-8, 421)

More problems from Solve a system of linear and quadratic equations: parabolas