Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=44x+100y = -44x + 100\newliney=x244x44y = x^2 - 44x - 44\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=44x+100y = -44x + 100\newliney=x244x44y = x^2 - 44x - 44\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: We have the system of equations:\newliney=44x+100y = -44x + 100\newliney=x244x44y = x^2 - 44x - 44\newlineSet the two equations equal to each other to find the xx-values where they intersect.\newline44x+100=x244x44-44x + 100 = x^2 - 44x - 44
  2. Simplify Quadratic Equation: Simplify the equation by moving all terms to one side to form a quadratic equation.\newline0=x244x44+44x1000 = x^2 - 44x - 44 + 44x - 100\newline0=x21440 = x^2 - 144
  3. Solve for x: Solve the quadratic equation for x.\newlinex2=144x^2 = 144\newlineTake the square root of both sides.\newlinex=±12x = \pm12
  4. Find y-values: Find the corresponding y-values for each x-value by substituting back into one of the original equations. Let's use y=44x+100y = -44x + 100.\newlineFor x=12x = 12:\newliney=44(12)+100y = -44(12) + 100\newliney=528+100y = -528 + 100\newliney=428y = -428
  5. Find Second y-value: Find the y-value for the second x-value.\newlineFor x=12x = -12:\newliney=44(12)+100y = -44(-12) + 100\newliney=528+100y = 528 + 100\newliney=628y = 628
  6. Write Coordinates: Write the coordinates in exact form.\newlineFirst Coordinate: (12,428)(12, -428)\newlineSecond Coordinate: (12,628)(-12, 628)

More problems from Solve a system of linear and quadratic equations: parabolas