Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=31x+73y = -31x + 73\newliney=x231x48y = x^2 - 31x - 48\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=31x+73y = -31x + 73\newliney=x231x48y = x^2 - 31x - 48\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: We have the system of equations:\newliney=31x+73y = -31x + 73\newliney=x231x48y = x^2 - 31x - 48\newlineSet the two equations equal to each other to find the xx-values where they intersect.\newline31x+73=x231x48-31x + 73 = x^2 - 31x - 48
  2. Simplify Quadratic Equation: Simplify the equation by moving all terms to one side to form a quadratic equation.\newline0=x231x48+31x730 = x^2 - 31x - 48 + 31x - 73\newline0=x21210 = x^2 - 121
  3. Solve for x: Solve the quadratic equation for x.\newlinex2121=0x^2 - 121 = 0\newlineFactor the difference of squares.\newline(x11)(x+11)=0(x - 11)(x + 11) = 0
  4. Factor and Solve: Set each factor equal to zero and solve for xx.x11=0x - 11 = 0 or x+11=0x + 11 = 0x=11x = 11 or x=11x = -11
  5. Find Y-Values: Find the corresponding y-values for each x-value by substituting back into one of the original equations. We'll use y=31x+73y = -31x + 73.\newlineFor x=11x = 11:\newliney=31(11)+73y = -31(11) + 73\newliney=341+73y = -341 + 73\newliney=268y = -268\newlineFor x=11x = -11:\newliney=31(11)+73y = -31(-11) + 73\newliney=341+73y = 341 + 73\newliney=414y = 414

More problems from Solve a system of linear and quadratic equations: parabolas