Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=2x238x+7y = 2x^2 - 38x + 7\newliney=38x+25y = -38x + 25\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=2x238x+7y = 2x^2 - 38x + 7\newliney=38x+25y = -38x + 25\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other to find the xx-values where they intersect.\newliney=2x238x+7y = 2x^2 - 38x + 7\newliney=38x+25y = -38x + 25\newline2x238x+7=38x+252x^2 - 38x + 7 = -38x + 25
  2. Simplify Quadratic Equation: Simplify the equation by moving all terms to one side to form a quadratic equation. \newline2x238x+7+38x25=02x^2 - 38x + 7 + 38x - 25 = 0\newline2x218=02x^2 - 18 = 0
  3. Solve for x: Solve the quadratic equation for x.\newline2x2=182x^2 = 18\newlinex2=9x^2 = 9\newlinex=±3x = \pm3
  4. Find Corresponding y-Values: Find the corresponding y-values for each x-value by substituting back into one of the original equations. Let's use y=38x+25y = -38x + 25. For x=3x = 3: y=38(3)+25y = -38(3) + 25 y=114+25y = -114 + 25 y=89y = -89 For x=3x = -3: y=38(3)+25y = -38(-3) + 25 y=114+25y = 114 + 25 y=139y = 139
  5. Write Coordinates: Write the coordinates in exact form.\newlineFirst Coordinate: (3,89)(3, -89)\newlineSecond Coordinate: (3,139)(-3, 139)

More problems from Solve a system of linear and quadratic equations: parabolas