Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=2x215x16y = 2x^2 - 15x - 16\newliney=15x+2y = -15x + 2\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=2x215x16y = 2x^2 - 15x - 16\newliney=15x+2y = -15x + 2\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: We have the system of equations:\newliney=2x215x16y = 2x^2 - 15x - 16\newliney=15x+2y = -15x + 2\newlineSet the two equations equal to each other to find the xx-values where they intersect.\newline2x215x16=15x+22x^2 - 15x - 16 = -15x + 2
  2. Simplify Quadratic Equation: Simplify the equation by moving all terms to one side to form a quadratic equation. \newline2x215x16+15x2=02x^2 - 15x - 16 + 15x - 2 = 0\newline2x218=02x^2 - 18 = 0
  3. Isolate Quadratic Term: Add 1818 to both sides to isolate the quadratic term.\newline2x2=182x^2 = 18
  4. Solve for x: Divide both sides by 22 to solve for x2x^2.x2=9x^2 = 9
  5. Substitute xx into Equation: Take the square root of both sides to solve for xx.x=±3x = \pm 3
  6. Calculate y Values: Find the corresponding yy-values for each xx-value by substituting xx into one of the original equations. Let's use y=15x+2y = -15x + 2. For x=3x = 3: y=15(3)+2y = -15(3) + 2 y=45+2y = -45 + 2 y=43y = -43
  7. Write Coordinates: For x=3x = -3: \newliney=15(3)+2y = -15(-3) + 2 \newliney=45+2y = 45 + 2 \newliney=47y = 47
  8. Write Coordinates: For x=3x = -3:y=15(3)+2y = -15(-3) + 2y=45+2y = 45 + 2y=47y = 47Write the coordinates in exact form.First Coordinate: (3,43)\text{First Coordinate: } (3, -43)Second Coordinate: (3,47)\text{Second Coordinate: } (-3, 47)

More problems from Solve a system of linear and quadratic equations: parabolas