Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=2x15y = 2x - 15\newlinex2+y2=170x^2 + y^2 = 170\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=2x15y = 2x - 15\newlinex2+y2=170x^2 + y^2 = 170\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Substitute y Equation: Substitute yy from the first equation into the second equation.\newliney=2x15y = 2x - 15\newlinex2+y2=170x^2 + y^2 = 170\newlinex2+(2x15)2=170x^2 + (2x - 15)^2 = 170
  2. Expand and Simplify: Expand the squared term and simplify the equation.\newlinex2+(2x15)(2x15)=170x^2 + (2x - 15)(2x - 15) = 170\newlinex2+4x260x+225=170x^2 + 4x^2 - 60x + 225 = 170\newline5x260x+225=1705x^2 - 60x + 225 = 170
  3. Set Equation to Zero: Subtract 170170 from both sides to set the equation to zero.\newline5x260x+225170=05x^2 - 60x + 225 - 170 = 0\newline5x260x+55=05x^2 - 60x + 55 = 0
  4. Divide and Simplify: Divide the entire equation by 55 to simplify.\newlinex212x+11=0x^2 - 12x + 11 = 0
  5. Factor Quadratic Equation: Factor the quadratic equation. \newline(x11)(x1)=0(x - 11)(x - 1) = 0
  6. Solve for x: Solve for x by setting each factor equal to zero.\newlinex11=0x - 11 = 0 or x1=0x - 1 = 0\newlinex=11x = 11 or x=1x = 1
  7. Find y-values: Find the corresponding y-values using the first equation y=2x15y = 2x - 15. For x=11x = 11: y=2(11)15=2215=7y = 2(11) - 15 = 22 - 15 = 7 For x=1x = 1: y=2(1)15=215=13y = 2(1) - 15 = 2 - 15 = -13
  8. Write Coordinates: Write the coordinates in exact form.\newlineFirst Coordinate: (11,7)(11, 7)\newlineSecond Coordinate: (1,13)(1, -13)

More problems from Solve a system of linear and quadratic equations: circles