Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=13x+81y = -13x + 81\newliney=x213x40y = x^2 - 13x - 40\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=13x+81y = -13x + 81\newliney=x213x40y = x^2 - 13x - 40\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.13x+81=x213x40-13x + 81 = x^2 - 13x - 40
  2. Move Terms, Set to Zero: Move all terms to one side to set the equation to zero.\newline0=x213x+13x40810 = x^2 - 13x + 13x - 40 - 81
  3. Simplify Equation: Simplify the equation by combining like terms.\newline0=x21210 = x^2 - 121
  4. Factor Quadratic: Factor the quadratic equation.\newline0=(x11)(x+11)0 = (x - 11)(x + 11)
  5. Solve for x: Set each factor equal to zero and solve for x.\newlinex11=0x - 11 = 0 or x+11=0x + 11 = 0\newlinex=11x = 11 or x=11x = -11
  6. Find yy (x=11x=11): Substitute x=11x = 11 into one of the original equations to find yy.
    y=13(11)+81y = -13(11) + 81
    y=143+81y = -143 + 81
    y=62y = -62
  7. Find yy (x=11x=-11): Substitute x=11x = -11 into the same original equation to find the other yy.
    y=13(11)+81y = -13(-11) + 81
    y=143+81y = 143 + 81
    y=224y = 224
  8. Write Coordinates: Write the coordinates in exact form.\newlineFirst Coordinate: (11,62)(11, -62)\newlineSecond Coordinate: (11,224)(-11, 224)

More problems from Solve a system of linear and quadratic equations: parabolas