Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=12x9y = -12x - 9\newliney=x2+10x+31y = x^2 + 10x + 31\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=12x9y = -12x - 9\newliney=x2+10x+31y = x^2 + 10x + 31\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.y=12x9y = -12x - 9y=x2+10x+31y = x^2 + 10x + 31So, 12x9=x2+10x+31-12x - 9 = x^2 + 10x + 31
  2. Rearrange and Solve: Rearrange the equation to set it to zero and solve for xx.0=x2+10x+31+12x+90 = x^2 + 10x + 31 + 12x + 90=x2+22x+400 = x^2 + 22x + 40
  3. Factor Quadratic Equation: Factor the quadratic equation.\newline0=(x+2)(x+20)0 = (x + 2)(x + 20)
  4. Solve for x: Solve for x by setting each factor equal to zero.\newlinex+2=0x + 2 = 0 or x+20=0x + 20 = 0\newlineThis gives us x=2x = -2 or x=20x = -20
  5. Substitute x Values: Substitute x=2x = -2 into one of the original equations to find the corresponding yy value.\newlineUsing y=x2+10x+31y = x^2 + 10x + 31:\newliney=(2)2+10(2)+31y = (-2)^2 + 10(-2) + 31\newliney=420+31y = 4 - 20 + 31\newliney=15y = 15\newlineSo one intersection point is (2,15)(-2, 15).
  6. Find Intersection Points: Substitute x=20x = -20 into one of the original equations to find the corresponding yy value.\newlineUsing y=x2+10x+31y = x^2 + 10x + 31:\newliney=(20)2+10(20)+31y = (-20)^2 + 10(-20) + 31\newliney=400200+31y = 400 - 200 + 31\newliney=231y = 231\newlineSo the other intersection point is (20,231)(-20, 231).

More problems from Solve a nonlinear system of equations