Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newlinex=y13x = y - 13\newlinex2+y2=97x^2 + y^2 = 97\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newlinex=y13x = y - 13\newlinex2+y2=97x^2 + y^2 = 97\newline\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Substitute xx into second equation: Substitute xx from the first equation into the second equation.\newlinex=y13x = y - 13\newlinex2+y2=97x^2 + y^2 = 97\newline(y13)2+y2=97(y - 13)^2 + y^2 = 97
  2. Expand and simplify: Expand the squared term and simplify the equation.\newline(y13)2+y2=97(y - 13)^2 + y^2 = 97\newliney226y+169+y2=97y^2 - 26y + 169 + y^2 = 97\newline2y226y+169=972y^2 - 26y + 169 = 97
  3. Set equation to zero: Subtract 9797 from both sides to set the equation to zero.\newline2y226y+16997=02y^2 - 26y + 169 - 97 = 0\newline2y226y+72=02y^2 - 26y + 72 = 0
  4. Divide and simplify: Divide the entire equation by 22 to simplify.\newliney213y+36=0y^2 - 13y + 36 = 0
  5. Factor the quadratic equation: Factor the quadratic equation.\newline(y9)(y4)=0(y - 9)(y - 4) = 0
  6. Solve for y: Solve for y by setting each factor equal to zero.\newliney9=0y - 9 = 0 or y4=0y - 4 = 0\newliney=9y = 9 or y=4y = 4
  7. Substitute yy back into xx: Substitute yy values back into x=y13x = y - 13 to find corresponding xx values.\newlineFor y=9y = 9: x=913=4x = 9 - 13 = -4\newlineFor y=4y = 4: x=413=9x = 4 - 13 = -9

More problems from Solve a system of linear and quadratic equations: circles