Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve the
system of equations
.
\newline
x
=
−
3
y
x = -3y
x
=
−
3
y
\newline
x
2
+
y
2
=
360
x^2 + y^2 = 360
x
2
+
y
2
=
360
\newline
\newline
Write the coordinates in exact form. Simplify all
fractions
and radicals.
\newline
(______,______)
\newline
(______,______)
View step-by-step help
Home
Math Problems
Algebra 2
Solve a system of linear and quadratic equations: circles
Full solution
Q.
Solve the system of equations.
\newline
x
=
−
3
y
x = -3y
x
=
−
3
y
\newline
x
2
+
y
2
=
360
x^2 + y^2 = 360
x
2
+
y
2
=
360
\newline
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(______,______)
\newline
(______,______)
Substitute and Simplify:
Substitute
x
=
−
3
y
x = -3y
x
=
−
3
y
into the second equation
x
2
+
y
2
=
360
x^2 + y^2 = 360
x
2
+
y
2
=
360
.
(
−
3
y
)
2
+
y
2
=
360
(-3y)^2 + y^2 = 360
(
−
3
y
)
2
+
y
2
=
360
9
y
2
+
y
2
=
360
9y^2 + y^2 = 360
9
y
2
+
y
2
=
360
Combine Like Terms:
Combine like terms.
10
y
2
=
360
10y^2 = 360
10
y
2
=
360
Divide and Solve:
Divide both sides by
10
10
10
to solve for
y
2
y^2
y
2
.
\newline
y
2
=
36
y^2 = 36
y
2
=
36
Find
y
y
y
:
Take the
square root
of both sides to find
y
y
y
.
\newline
y
=
±
6
y = \pm 6
y
=
±
6
Substitute and Find
x
x
x
:
Substitute
y
y
y
back into
x
=
−
3
y
x = -3y
x
=
−
3
y
to find
x
x
x
.
\newline
For
y
=
6
y = 6
y
=
6
:
x
=
−
3
(
6
)
=
−
18
x = -3(6) = -18
x
=
−
3
(
6
)
=
−
18
\newline
For
y
=
−
6
y = -6
y
=
−
6
:
x
=
−
3
(
−
6
)
=
18
x = -3(-6) = 18
x
=
−
3
(
−
6
)
=
18
Write Coordinates:
Write the coordinates in exact form.
\newline
First Coordinate:
(
−
18
,
6
)
(-18, 6)
(
−
18
,
6
)
\newline
Second Coordinate:
(
18
,
−
6
)
(18, -6)
(
18
,
−
6
)
More problems from Solve a system of linear and quadratic equations: circles
Question
Solve using substitution.
5
x
−
2
y
=
−
7
5x - 2y = -7
5
x
−
2
y
=
−
7
x
=
−
5
x = -5
x
=
−
5
(_,_)
Get tutor help
Posted 5 months ago
Question
Is
(
1
,
1
)
(1,1)
(
1
,
1
)
a solution to this system of equations?
\newline
4
x
+
10
y
=
14
4x + 10y = 14
4
x
+
10
y
=
14
\newline
x
+
6
y
=
7
x + 6y = 7
x
+
6
y
=
7
\newline
Choices:
\newline
(A) yes
\newline
(B) no
Get tutor help
Posted 5 months ago
Question
Which describes the system of equations below?
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
Choices:
\newline
(A) consistent and independent
\text{(A) consistent and independent}
(A) consistent and independent
\newline
(B) consistent and dependent
\text{(B) consistent and dependent}
(B) consistent and dependent
\newline
(C) inconsistent
\text{(C) inconsistent}
(C) inconsistent
Get tutor help
Posted 5 months ago
Question
Solve using elimination.
\newline
7
x
−
8
y
=
−
17
7x - 8y = -17
7
x
−
8
y
=
−
17
\newline
−
7
x
+
3
y
=
2
-7x + 3y = 2
−
7
x
+
3
y
=
2
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 5 months ago
Question
Solve.
\newline
x
=
−
2
x = -2
x
=
−
2
\newline
−
2
x
+
2
y
=
−
8
-2x + 2y = -8
−
2
x
+
2
y
=
−
8
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 9 months ago
Question
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
\newline
At a community barbecue, Mrs. Wilkerson and Mr. Hogan are buying dinner for their families. Mrs. Wilkerson purchases
3
3
3
hot dog meals and
3
3
3
hamburger meals, paying a total of
$
36
\$36
$36
. Mr. Hogan buys
1
1
1
hot dog meal and
3
3
3
hamburger meals, spending
$
26
\$26
$26
in all. How much do the meals cost?
\newline
Hot dog meals cost
$
\$
$
_______ each, and hamburger meals cost
$
\$
$
________ each.
Get tutor help
Posted 9 months ago
Question
Solve the system of equations by substitution.
\newline
−
3
x
−
y
−
3
z
=
−
11
-3x - y - 3z = -11
−
3
x
−
y
−
3
z
=
−
11
\newline
z
=
5
z = 5
z
=
5
\newline
x
−
y
+
3
z
=
19
x - y + 3z = 19
x
−
y
+
3
z
=
19
\newline
(____.____,____)
Get tutor help
Posted 5 months ago
Question
Solve the system of equations by elimination.
\newline
x
−
3
y
−
2
z
=
10
x - 3y - 2z = 10
x
−
3
y
−
2
z
=
10
\newline
3
x
+
2
y
+
2
z
=
14
3x + 2y + 2z = 14
3
x
+
2
y
+
2
z
=
14
\newline
2
x
−
3
y
−
2
z
=
16
2x - 3y - 2z = 16
2
x
−
3
y
−
2
z
=
16
\newline
(
_
,
_
,
_
)
(\_,\_,\_)
(
_
,
_
,
_
)
Get tutor help
Posted 5 months ago
Question
Solve the system of equations.
\newline
y
=
x
2
+
36
x
+
3
y = x^2 + 36x + 3
y
=
x
2
+
36
x
+
3
\newline
y
=
22
x
−
37
y = 22x - 37
y
=
22
x
−
37
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 5 months ago
Question
Solve the system of equations.
\newline
y
=
−
x
−
24
y = -x - 24
y
=
−
x
−
24
\newline
x
2
+
y
2
=
488
x^2 + y^2 = 488
x
2
+
y
2
=
488
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 5 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant