Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newlinex=3y+5x = -3y + 5\newlinex2+y2=5x^2 + y^2 = 5\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newlinex=3y+5x = -3y + 5\newlinex2+y2=5x^2 + y^2 = 5\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Substitute xx into second equation: Substitute xx from the first equation into the second equation.\newlinex=3y+5x = -3y + 5\newlinex2+y2=5x^2 + y^2 = 5\newline(3y+5)2+y2=5(-3y + 5)^2 + y^2 = 5
  2. Expand and simplify: Expand the squared term and simplify the equation.\newline(3y+5)2+y2=5(-3y + 5)^2 + y^2 = 5\newline9y230y+25+y2=59y^2 - 30y + 25 + y^2 = 5\newline10y230y+25=510y^2 - 30y + 25 = 5
  3. Set equation to zero: Subtract 55 from both sides to set the equation to zero.\newline10y230y+255=010y^2 - 30y + 25 - 5 = 0\newline10y230y+20=010y^2 - 30y + 20 = 0
  4. Divide and simplify: Divide the entire equation by 1010 to simplify.\newline10y21030y10+2010=0\frac{10y^2}{10} - \frac{30y}{10} + \frac{20}{10} = 0\newliney23y+2=0y^2 - 3y + 2 = 0
  5. Factor the quadratic equation: Factor the quadratic equation.\newliney23y+2=0y^2 - 3y + 2 = 0\newline(y2)(y1)=0(y - 2)(y - 1) = 0
  6. Solve for y: Solve for y by setting each factor equal to zero.\newliney2=0y - 2 = 0 or y1=0y - 1 = 0\newliney=2y = 2 or y=1y = 1
  7. Substitute yy into first equation: Substitute yy back into the first equation to find xx.\newlineFor y=2y = 2: x=3(2)+5=6+5=1x = -3(2) + 5 = -6 + 5 = -1\newlineFor y=1y = 1: x=3(1)+5=3+5=2x = -3(1) + 5 = -3 + 5 = 2
  8. Write coordinates in exact form: Write the coordinates in exact form.\newlineFirst Coordinate: (1,2)(-1, 2)\newlineSecond Coordinate: (2,1)(2, 1)

More problems from Solve a system of linear and quadratic equations: circles