Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations by substitution.\newline2x+y3z=202x + y - 3z = -20\newlinex=1x = -1\newlinex3y3z=5x - 3y - 3z = 5

Full solution

Q. Solve the system of equations by substitution.\newline2x+y3z=202x + y - 3z = -20\newlinex=1x = -1\newlinex3y3z=5x - 3y - 3z = 5
  1. Substitute x=1x = -1: Substitute x=1x = -1 into 2x+y3z=202x + y - 3z = -20.\newlineCalculation: 2(1)+y3z=202(-1) + y - 3z = -20\newline2+y3z=20-2 + y - 3z = -20\newliney3z=18y - 3z = -18
  2. Substitute x=1x = -1: Substitute x=1x = -1 into x3y3z=5x - 3y - 3z = 5.\newlineCalculation: (1)3y3z=5(-1) - 3y - 3z = 5\newline13y3z=5-1 - 3y - 3z = 5\newline3y3z=6-3y - 3z = 6
  3. Divide second equation: Divide the second equation by 3-3 to simplify.\newlineCalculation: 3y3z3=63\frac{-3y - 3z}{-3} = \frac{6}{-3}\newliney + z = 2-2
  4. Substitute zz from: Substitute zz from y+z=2y + z = -2 into y3z=18y - 3z = -18.\newlineCalculation: y3(2y)=18y - 3(-2 - y) = -18\newliney+6+3y=18y + 6 + 3y = -18\newline4y+6=184y + 6 = -18
  5. Subtract 66: Subtract 66 from both sides to solve for yy.\newlineCalculation: 4y=1864y = -18 - 6\newline4y=244y = -24\newliney=24/4y = -24 / 4\newliney=6y = -6
  6. Substitute y=6y = -6: Substitute y=6y = -6 into y+z=2y + z = -2 to find zz.\newlineCalculation: 6+z=2-6 + z = -2\newlinez=2+6z = -2 + 6\newlinez=4z = 4
  7. Check values satisfy: We have x=1x = -1, y=6y = -6, and z=4z = 4. Check if these values satisfy the original equations. For 2x+y3z=202x + y - 3z = -20: 2(1)+(6)3(4)=202(-1) + (-6) - 3(4) = -20 2612=20-2 - 6 - 12 = -20 20=20-20 = -20 (Correct) For x3y3z=5x - 3y - 3z = 5: (1)3(6)3(4)=5(-1) - 3(-6) - 3(4) = 5 1+1812=5-1 + 18 - 12 = 5 y=6y = -600 (Correct)

More problems from Solve a system of equations in three variables using substitution