Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations by substitution.\newline2x3y+3z=4-2x - 3y + 3z = -4\newliney=4y = 4\newlinex+yz=1x + y - z = -1

Full solution

Q. Solve the system of equations by substitution.\newline2x3y+3z=4-2x - 3y + 3z = -4\newliney=4y = 4\newlinex+yz=1x + y - z = -1
  1. Substitute y=4y = 4: Substitute y=4y = 4 into 2x3y+3z=4-2x - 3y + 3z = -4.
    2x3(4)+3z=4-2x - 3(4) + 3z = -4
    2x12+3z=4-2x - 12 + 3z = -4
  2. Add 1212 to isolate: Add 1212 to both sides to isolate terms with variables.\newline2x+3z=4+12-2x + 3z = -4 + 12\newline2x+3z=8-2x + 3z = 8
  3. Substitute y=4y = 4: Substitute y=4y = 4 into x+yz=1x + y - z = -1.\newlinex+4z=1x + 4 - z = -1
  4. Subtract 44 to isolate: Subtract 44 from both sides to isolate terms with variables.\newlinexz=14x - z = -1 - 4\newlinexz=5x - z = -5
  5. Solve for x: Now we have two equations:\newline11) 2x+3z=8-2x + 3z = 8\newline22) xz=5x - z = -5\newlineLet's solve equation 22) for x.\newlinex=z5x = z - 5
  6. Substitute x=z5x = z - 5: Substitute x=z5x = z - 5 into equation 11).2(z5)+3z=8-2(z - 5) + 3z = 82z+10+3z=8-2z + 10 + 3z = 8
  7. Combine like terms: Combine like terms. z+10=8z + 10 = 8
  8. Subtract 1010 for zz: Subtract 1010 from both sides to solve for zz.z=810z = 8 - 10z=2z = -2
  9. Substitute z=2z = -2: Substitute z=2z = -2 into x=z5x = z - 5.\newlinex=25x = -2 - 5\newlinex=7x = -7
  10. Find all three values: We already have y=4y = 4 from the given equation.\newlineSo, we have found all three values:\newlinex=7x = -7, y=4y = 4, z=2z = -2

More problems from Solve a system of equations in three variables using substitution