Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations by elimination.\newline3x+y+z=5-3x + y + z = 5\newline2xy+2z=19-2x - y + 2z = -19\newline2x+2yz=182x + 2y - z = 18

Full solution

Q. Solve the system of equations by elimination.\newline3x+y+z=5-3x + y + z = 5\newline2xy+2z=19-2x - y + 2z = -19\newline2x+2yz=182x + 2y - z = 18
  1. Combine equations to eliminate y: Combine the first and second equations to eliminate y.\newline3x+y+z=5-3x + y + z = 5\newline2xy+2z=19-2x - y + 2z = -19\newlineAdd them together:\newline3x+y+z+(2xy+2z)=519-3x + y + z + (-2x - y + 2z) = 5 - 19\newline5x+3z=14-5x + 3z = -14
  2. Combine equations to eliminate yy: Combine the second and third equations to eliminate yy.
    2xy+2z=19-2x - y + 2z = -19
    2x+2yz=182x + 2y - z = 18
    Add them together:
    2xy+2z+(2x+2yz)=19+18-2x - y + 2z + (2x + 2y - z) = -19 + 18
    z=1z = -1
  3. Substitute zz to find xx: Substitute z=1z = -1 into 5x+3z=14-5x + 3z = -14 to find xx.
    5x+3(1)=14-5x + 3(-1) = -14
    5x3=14-5x - 3 = -14
    5x=14+3-5x = -14 + 3
    5x=11-5x = -11
    x=11/5x = -11 / -5
    xx00
  4. Substitute zz to find yy: Substitute z=1z = -1 into the first equation to find yy.
    3x+y+z=5-3x + y + z = 5
    3(115)+y+(1)=5-3(\frac{11}{5}) + y + (-1) = 5
    335+y1=5-\frac{33}{5} + y - 1 = 5
    y=5+335+1y = 5 + \frac{33}{5} + 1
    y=5+335+55y = 5 + \frac{33}{5} + \frac{5}{5}
    y=(25+33+55)y = (\frac{25 + 33 + 5}{5})
    yy00

More problems from Solve a system of equations in three variables using elimination