Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve the
system of equations
by elimination.
\newline
−
3
x
+
y
−
2
z
=
3
-3x + y - 2z = 3
−
3
x
+
y
−
2
z
=
3
\newline
2
x
−
y
+
3
z
=
−
18
2x - y + 3z = -18
2
x
−
y
+
3
z
=
−
18
\newline
x
+
y
+
2
z
=
−
9
x + y + 2z = -9
x
+
y
+
2
z
=
−
9
View step-by-step help
Home
Math Problems
Algebra 2
Solve a system of equations in three variables using elimination
Full solution
Q.
Solve the system of equations by elimination.
\newline
−
3
x
+
y
−
2
z
=
3
-3x + y - 2z = 3
−
3
x
+
y
−
2
z
=
3
\newline
2
x
−
y
+
3
z
=
−
18
2x - y + 3z = -18
2
x
−
y
+
3
z
=
−
18
\newline
x
+
y
+
2
z
=
−
9
x + y + 2z = -9
x
+
y
+
2
z
=
−
9
Combine Equations to Eliminate
y
y
y
:
Combine the first and second equations to eliminate
y
y
y
.
(
−
3
x
+
y
−
2
z
)
+
(
2
x
−
y
+
3
z
)
=
3
+
(
−
18
)
(-3x + y - 2z) + (2x - y + 3z) = 3 + (-18)
(
−
3
x
+
y
−
2
z
)
+
(
2
x
−
y
+
3
z
)
=
3
+
(
−
18
)
−
3
x
+
y
−
2
z
+
2
x
−
y
+
3
z
=
−
15
-3x + y - 2z + 2x - y + 3z = -15
−
3
x
+
y
−
2
z
+
2
x
−
y
+
3
z
=
−
15
−
x
+
z
=
−
15
-x + z = -15
−
x
+
z
=
−
15
Combine Equations to Eliminate
y
y
y
:
Combine the second and third equations to eliminate
y
y
y
.
(
2
x
−
y
+
3
z
)
+
(
x
+
y
+
2
z
)
=
−
18
+
(
−
9
)
(2x - y + 3z) + (x + y + 2z) = -18 + (-9)
(
2
x
−
y
+
3
z
)
+
(
x
+
y
+
2
z
)
=
−
18
+
(
−
9
)
2
x
−
y
+
3
z
+
x
+
y
+
2
z
=
−
27
2x - y + 3z + x + y + 2z = -27
2
x
−
y
+
3
z
+
x
+
y
+
2
z
=
−
27
3
x
+
5
z
=
−
27
3x + 5z = -27
3
x
+
5
z
=
−
27
Multiply to Eliminate
x
x
x
:
Multiply the equation
−
x
+
z
=
−
15
-x + z = -15
−
x
+
z
=
−
15
by
3
3
3
to help eliminate
x
x
x
when added to
3
x
+
5
z
=
−
27
3x + 5z = -27
3
x
+
5
z
=
−
27
.
\newline
3
(
−
x
+
z
)
=
3
(
−
15
)
3(-x + z) = 3(-15)
3
(
−
x
+
z
)
=
3
(
−
15
)
\newline
−
3
x
+
3
z
=
−
45
-3x + 3z = -45
−
3
x
+
3
z
=
−
45
Add Equations to Eliminate
x
x
x
:
Add the equations
−
3
x
+
3
z
=
−
45
-3x + 3z = -45
−
3
x
+
3
z
=
−
45
and
3
x
+
5
z
=
−
27
3x + 5z = -27
3
x
+
5
z
=
−
27
to eliminate
x
x
x
.
(
−
3
x
+
3
z
)
+
(
3
x
+
5
z
)
=
−
45
+
(
−
27
)
(-3x + 3z) + (3x + 5z) = -45 + (-27)
(
−
3
x
+
3
z
)
+
(
3
x
+
5
z
)
=
−
45
+
(
−
27
)
−
3
x
+
3
z
+
3
x
+
5
z
=
−
72
-3x + 3z + 3x + 5z = -72
−
3
x
+
3
z
+
3
x
+
5
z
=
−
72
8
z
=
−
72
8z = -72
8
z
=
−
72
Find
z
z
z
:
Divide both sides by
8
8
8
to find
z
z
z
.
8
z
8
=
−
72
8
\frac{8z}{8} = \frac{-72}{8}
8
8
z
=
8
−
72
z
=
−
9
z = -9
z
=
−
9
Find
x
x
x
:
Substitute
z
=
−
9
z = -9
z
=
−
9
into
−
x
+
z
=
−
15
-x + z = -15
−
x
+
z
=
−
15
to find
x
x
x
.
\newline
−
x
+
(
−
9
)
=
−
15
-x + (-9) = -15
−
x
+
(
−
9
)
=
−
15
\newline
−
x
−
9
=
−
15
-x - 9 = -15
−
x
−
9
=
−
15
Solve for x:
Add
9
9
9
to both sides to solve for x.
\newline
−
x
−
9
+
9
=
−
15
+
9
-x - 9 + 9 = -15 + 9
−
x
−
9
+
9
=
−
15
+
9
\newline
−
x
=
−
6
-x = -6
−
x
=
−
6
\newline
x
=
6
x = 6
x
=
6
Find
y
y
y
:
Substitute
x
=
6
x = 6
x
=
6
and
z
=
−
9
z = -9
z
=
−
9
into the third equation
x
+
y
+
2
z
=
−
9
x + y + 2z = -9
x
+
y
+
2
z
=
−
9
to find
y
y
y
.
6
+
y
+
2
(
−
9
)
=
−
9
6 + y + 2(-9) = -9
6
+
y
+
2
(
−
9
)
=
−
9
6
+
y
−
18
=
−
9
6 + y - 18 = -9
6
+
y
−
18
=
−
9
Solve for y:
Add
18
18
18
to both sides and then subtract
6
6
6
to solve for
y
y
y
.
\newline
y
−
18
+
18
=
−
9
+
18
−
6
y - 18 + 18 = -9 + 18 - 6
y
−
18
+
18
=
−
9
+
18
−
6
\newline
y
=
3
y = 3
y
=
3
More problems from Solve a system of equations in three variables using elimination
Question
Solve using substitution.
5
x
−
2
y
=
−
7
5x - 2y = -7
5
x
−
2
y
=
−
7
x
=
−
5
x = -5
x
=
−
5
(_,_)
Get tutor help
Posted 6 months ago
Question
Is
(
1
,
1
)
(1,1)
(
1
,
1
)
a solution to this system of equations?
\newline
4
x
+
10
y
=
14
4x + 10y = 14
4
x
+
10
y
=
14
\newline
x
+
6
y
=
7
x + 6y = 7
x
+
6
y
=
7
\newline
Choices:
\newline
(A) yes
\newline
(B) no
Get tutor help
Posted 6 months ago
Question
Which describes the system of equations below?
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
Choices:
\newline
(A) consistent and independent
\text{(A) consistent and independent}
(A) consistent and independent
\newline
(B) consistent and dependent
\text{(B) consistent and dependent}
(B) consistent and dependent
\newline
(C) inconsistent
\text{(C) inconsistent}
(C) inconsistent
Get tutor help
Posted 6 months ago
Question
Solve using elimination.
\newline
7
x
−
8
y
=
−
17
7x - 8y = -17
7
x
−
8
y
=
−
17
\newline
−
7
x
+
3
y
=
2
-7x + 3y = 2
−
7
x
+
3
y
=
2
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 6 months ago
Question
Solve.
\newline
x
=
−
2
x = -2
x
=
−
2
\newline
−
2
x
+
2
y
=
−
8
-2x + 2y = -8
−
2
x
+
2
y
=
−
8
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 10 months ago
Question
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
\newline
At a community barbecue, Mrs. Wilkerson and Mr. Hogan are buying dinner for their families. Mrs. Wilkerson purchases
3
3
3
hot dog meals and
3
3
3
hamburger meals, paying a total of
$
36
\$36
$36
. Mr. Hogan buys
1
1
1
hot dog meal and
3
3
3
hamburger meals, spending
$
26
\$26
$26
in all. How much do the meals cost?
\newline
Hot dog meals cost
$
\$
$
_______ each, and hamburger meals cost
$
\$
$
________ each.
Get tutor help
Posted 10 months ago
Question
Solve the system of equations by substitution.
\newline
−
3
x
−
y
−
3
z
=
−
11
-3x - y - 3z = -11
−
3
x
−
y
−
3
z
=
−
11
\newline
z
=
5
z = 5
z
=
5
\newline
x
−
y
+
3
z
=
19
x - y + 3z = 19
x
−
y
+
3
z
=
19
\newline
(____.____,____)
Get tutor help
Posted 6 months ago
Question
Solve the system of equations by elimination.
\newline
x
−
3
y
−
2
z
=
10
x - 3y - 2z = 10
x
−
3
y
−
2
z
=
10
\newline
3
x
+
2
y
+
2
z
=
14
3x + 2y + 2z = 14
3
x
+
2
y
+
2
z
=
14
\newline
2
x
−
3
y
−
2
z
=
16
2x - 3y - 2z = 16
2
x
−
3
y
−
2
z
=
16
\newline
(
_
,
_
,
_
)
(\_,\_,\_)
(
_
,
_
,
_
)
Get tutor help
Posted 6 months ago
Question
Solve the system of equations.
\newline
y
=
x
2
+
36
x
+
3
y = x^2 + 36x + 3
y
=
x
2
+
36
x
+
3
\newline
y
=
22
x
−
37
y = 22x - 37
y
=
22
x
−
37
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 6 months ago
Question
Solve the system of equations.
\newline
y
=
−
x
−
24
y = -x - 24
y
=
−
x
−
24
\newline
x
2
+
y
2
=
488
x^2 + y^2 = 488
x
2
+
y
2
=
488
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 6 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant