Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations by elimination.\newline2x3yz=12x - 3y - z = 1\newline3x+3y2z=123x + 3y - 2z = -12\newline2xy2z=16-2x - y - 2z = 16

Full solution

Q. Solve the system of equations by elimination.\newline2x3yz=12x - 3y - z = 1\newline3x+3y2z=123x + 3y - 2z = -12\newline2xy2z=16-2x - y - 2z = 16
  1. Eliminate xx by adding equations: Add the first and third equations to eliminate xx.
    (2x3yz)+(2xy2z)=1+16(2x - 3y - z) + (-2x - y - 2z) = 1 + 16
    2x3yz2xy2z=172x - 3y - z - 2x - y - 2z = 17
    4y3z=17-4y - 3z = 17
  2. Eliminate xx by multiplying and adding equations: Multiply the second equation by 22 and add it to the third equation to eliminate xx.
    (2×(3x+3y2z))+(2xy2z)=2×(12)+16(2 \times (3x + 3y - 2z)) + (-2x - y - 2z) = 2 \times (-12) + 16
    6x+6y4z2xy2z=24+166x + 6y - 4z - 2x - y - 2z = -24 + 16
    4x+5y6z=84x + 5y - 6z = -8
  3. Solve for y from new equations: Now we have two new equations:\newline4y3z=17-4y - 3z = 17\newline4x+5y6z=84x + 5y - 6z = -8\newlineLet's solve for y from the first new equation.\newline4y=17+3z-4y = 17 + 3z\newliney=17+3z4y = -\frac{17 + 3z}{4}
  4. Substitute y in second new equation: Substitute y in the second new equation.\newline4x+5(17+3z4)6z=84x + 5\left(-\frac{17 + 3z}{4}\right) - 6z = -8\newline4x(854+15z4)6z=84x - \left(\frac{85}{4} + \frac{15z}{4}\right) - 6z = -8\newline4x85415z424z4=84x - \frac{85}{4} - \frac{15z}{4} - \frac{24z}{4} = -8\newline4x85439z4=84x - \frac{85}{4} - \frac{39z}{4} = -8
  5. Clear fractions by multiplying: Multiply everything by 44 to clear the fractions.\newline4×(4x85439z4)=4×(8)4 \times (4x - \frac{85}{4} - \frac{39z}{4}) = 4 \times (-8)\newline16x8539z=3216x - 85 - 39z = -32
  6. Solve for xx from first equation: Add 8585 to both sides.\newline16x39z=32+8516x - 39z = -32 + 85\newline16x39z=5316x - 39z = 53
  7. Substitute xx in original equation: Now we have two equations with two variables:\newline16x39z=5316x - 39z = 53\newline4y3z=17-4y - 3z = 17\newlineLet's solve for xx from the first equation.\newline16x=53+39z16x = 53 + 39z\newlinex=53+39z16x = \frac{53 + 39z}{16}
  8. Clear fractions by multiplying: Substitute xx in the first original equation.2(53+39z16)3yz=12\left(\frac{53 + 39z}{16}\right) - 3y - z = 1106+78z163yz=1\frac{106 + 78z}{16} - 3y - z = 1
  9. Combine like terms: Multiply everything by 1616 to clear the fractions.\newline16×(106+78z16)16×(3y)16×(z)=16×(1)16 \times \left(\frac{106 + 78z}{16}\right) - 16 \times (3y) - 16 \times (z) = 16 \times (1)\newline106+78z48y16z=16106 + 78z - 48y - 16z = 16
  10. Solve for zz from second equation: Combine like terms.106+62z48y=16106 + 62z - 48y = 16
  11. Substitute zz in equation: Subtract 106106 from both sides.\newline62z48y=1610662z - 48y = 16 - 106\newline62z48y=9062z - 48y = -90
  12. Clear fractions by multiplying: Now we have two equations with two variables:\newline62z48y=9062z - 48y = -90\newline4y3z=17-4y - 3z = 17\newlineLet's solve for zz from the second equation.\newline3z=17+4y-3z = 17 + 4y\newlinez=17+4y3z = -\frac{17 + 4y}{3}
  13. Distribute 62-62: Substitute zz in the equation 62z48y=9062z - 48y = -90.62(17+4y3)48y=9062\left(-\frac{17 + 4y}{3}\right) - 48y = -9062(17+4y)/348y=90-62\left(17 + 4y\right) / 3 - 48y = -90
  14. Combine like terms: Multiply everything by 33 to clear the fractions.3×(62(17+4y)/3)3×(48y)=3×(90)3 \times (-62(17 + 4y) / 3) - 3 \times (48y) = 3 \times (-90)62(17+4y)144y=270-62(17 + 4y) - 144y = -270
  15. Solve for yy: Distribute 62-62.
    62×1762×4y144y=270-62 \times 17 - 62 \times 4y - 144y = -270
    1054248y144y=270-1054 - 248y - 144y = -270
  16. Substitute yy in equation: Combine like terms.1054392y=270-1054 - 392y = -270
  17. Solve for zz: Add 10541054 to both sides.\newline392y=270+1054-392y = -270 + 1054\newline392y=784-392y = 784
  18. Substitute zz in equation: Divide by 392-392 to solve for yy.y=784392y = \frac{784}{-392}y=2y = -2
  19. Substitute zz in equation: Substitute yy back into the equation z=17+4y3z = -\frac{17 + 4y}{3}.z=17+4(2)3z = -\frac{17 + 4(-2)}{3}z=1783z = -\frac{17 - 8}{3}z=93z = -\frac{9}{3}z=3z = -3
  20. Substitute zz in equation: Substitute yy back into the equation z=17+4y3z = -\frac{17 + 4y}{3}.
    z=17+4(2)3z = -\frac{17 + 4(-2)}{3}
    z=1783z = -\frac{17 - 8}{3}
    z=93z = -\frac{9}{3}
    z=3z = -3Substitute zz back into the equation x=53+39z16x = \frac{53 + 39z}{16}.
    x=53+39(3)16x = \frac{53 + 39(-3)}{16}
    yy00
    yy11
    yy22

More problems from Solve a system of equations in three variables using elimination