Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for zz.\newline208(z+19)+420 \leq 8(z + 19) + 4

Full solution

Q. Solve for zz.\newline208(z+19)+420 \leq 8(z + 19) + 4
  1. Distribute 88: First, we need to simplify the inequality by distributing the 88 across the terms inside the parentheses.\newline208(z+19)+420 \leq 8(z + 19) + 4\newline208z+8(19)+420 \leq 8z + 8(19) + 4
  2. Calculate product: Now, we calculate the product of 88 and 1919. \newline208z+152+420 \leq 8z + 152 + 4
  3. Combine constant terms: Next, we combine the constant terms on the right side of the inequality. 208z+15620 \leq 8z + 156
  4. Isolate variable term: To isolate the variable term, we subtract 156156 from both sides of the inequality.\newline201568z+15615620 - 156 \leq 8z + 156 - 156\newline1368z-136 \leq 8z
  5. Divide to solve for z: Finally, we divide both sides of the inequality by 88 to solve for zz. \newline13688z8\frac{-136}{8} \leq \frac{8z}{8}\newline17z-17 \leq z

More problems from Solve advanced linear inequalities