Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
y.

{:[(y-1)/(3y+7)=(1)/(10)],[y=◻]:}

Solve for y y .\newliney13y+7=110y= \begin{array}{l} \frac{y-1}{3 y+7}=\frac{1}{10} \\ y=\square \end{array}

Full solution

Q. Solve for y y .\newliney13y+7=110y= \begin{array}{l} \frac{y-1}{3 y+7}=\frac{1}{10} \\ y=\square \end{array}
  1. Solve the equation: First, we will solve the equation (y1)/(3y+7)=1/10(y-1)/(3y+7) = 1/10 for yy.
  2. Multiply by (3y+7)(3y+7): Multiply both sides of the equation by (3y+7)(3y+7) to eliminate the denominator.\newline(3y+7)y13y+7=(3y+7)110(3y+7) \cdot \frac{y-1}{3y+7} = (3y+7) \cdot \frac{1}{10}
  3. Simplify the equation: Simplify the equation by canceling out the (3y+7)(3y+7) on the left side.\newliney1=3y+710y - 1 = \frac{3y + 7}{10}
  4. Multiply by 1010: Multiply both sides by 1010 to eliminate the fraction on the right side.\newline10(y1)=3y+710(y - 1) = 3y + 7
  5. Distribute the 1010: Distribute the 1010 on the left side. 10y10=3y+710y - 10 = 3y + 7
  6. Subtract 3y3y: Subtract 3y3y from both sides to get all yy terms on one side.\newline10y103y=3y+73y10y - 10 - 3y = 3y + 7 - 3y
  7. Combine like terms: Combine like terms. 7y10=77y - 10 = 7
  8. Add 1010: Add 1010 to both sides to isolate the yy term.\newline7y10+10=7+107y - 10 + 10 = 7 + 10
  9. Simplify the equation: Simplify the equation. 7y=177y = 17
  10. Divide by 77: Divide both sides by 77 to solve for yy.y=177y = \frac{17}{7}

More problems from Solve advanced linear inequalities